HuggingGPT / get_token_ids.py
lokutus's picture
Duplicate from microsoft/HuggingGPT
b80fa41
import tiktoken
encodings = {
"gpt-3.5-turbo": tiktoken.get_encoding("cl100k_base"),
"gpt-3.5-turbo-0301": tiktoken.get_encoding("cl100k_base"),
"text-davinci-003": tiktoken.get_encoding("p50k_base"),
"text-davinci-002": tiktoken.get_encoding("p50k_base"),
"text-davinci-001": tiktoken.get_encoding("r50k_base"),
"text-curie-001": tiktoken.get_encoding("r50k_base"),
"text-babbage-001": tiktoken.get_encoding("r50k_base"),
"text-ada-001": tiktoken.get_encoding("r50k_base"),
"davinci": tiktoken.get_encoding("r50k_base"),
"curie": tiktoken.get_encoding("r50k_base"),
"babbage": tiktoken.get_encoding("r50k_base"),
"ada": tiktoken.get_encoding("r50k_base"),
}
max_length = {
"gpt-3.5-turbo": 4096,
"gpt-3.5-turbo-0301": 4096,
"text-davinci-003": 4096,
"text-davinci-002": 4096,
"text-davinci-001": 2049,
"text-curie-001": 2049,
"text-babbage-001": 2049,
"text-ada-001": 2049,
"davinci": 2049,
"curie": 2049,
"babbage": 2049,
"ada": 2049
}
def count_tokens(model_name, text):
return len(encodings[model_name].encode(text))
def get_max_context_length(model_name):
return max_length[model_name]
def get_token_ids_for_task_parsing(model_name):
text = '''{"task": "text-classification", "token-classification", "text2text-generation", "summarization", "translation", "question-answering", "conversational", "text-generation", "sentence-similarity", "tabular-classification", "object-detection", "image-classification", "image-to-image", "image-to-text", "text-to-image", "visual-question-answering", "document-question-answering", "image-segmentation", "text-to-speech", "text-to-video", "automatic-speech-recognition", "audio-to-audio", "audio-classification", "canny-control", "hed-control", "mlsd-control", "normal-control", "openpose-control", "canny-text-to-image", "depth-text-to-image", "hed-text-to-image", "mlsd-text-to-image", "normal-text-to-image", "openpose-text-to-image", "seg-text-to-image", "args", "text", "path", "dep", "id", "<GENERATED>-"}'''
res = encodings[model_name].encode(text)
res = list(set(res))
return res
def get_token_ids_for_choose_model(model_name):
text = '''{"id": "reason"}'''
res = encodings[model_name].encode(text)
res = list(set(res))
return res