File size: 13,032 Bytes
20002df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753e275
20002df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35ba8d6
 
 
6d34920
20002df
 
 
 
 
 
 
 
c3bc524
20002df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f79ac0
20002df
c3bc524
 
 
35ba8d6
 
20002df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4b13f9
 
 
35ba8d6
 
20002df
 
 
35ba8d6
20002df
 
 
35ba8d6
 
 
 
 
 
 
 
 
 
20002df
2461ead
 
 
 
 
 
 
 
 
20002df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f79ac0
20002df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import sys
sys.path.append('./diffab-repo')
import os
import shutil
import pandas as pd
import yaml
import subprocess
import streamlit as st
import stmol
import py3Dmol
import tempfile
import re
import abnumber
import gzip
import tarfile
import torch
from tqdm.auto import tqdm
from Bio import PDB
from collections import OrderedDict

from diffab.tools.renumber import renumber as renumber_antibody
from diffab.tools.renumber.run import (
    biopython_chain_to_sequence, 
    assign_number_to_sequence,
)

CDR_OPTIONS = OrderedDict()
CDR_OPTIONS['H_CDR1'] = 'H1'
CDR_OPTIONS['H_CDR2'] = 'H2'
CDR_OPTIONS['H_CDR3'] = 'H3'
CDR_OPTIONS['L_CDR1'] = 'L1'
CDR_OPTIONS['L_CDR2'] = 'L2'
CDR_OPTIONS['L_CDR3'] = 'L3'

DESIGN_MODES = OrderedDict()
DESIGN_MODES['denovo'] = 'De novo design'
DESIGN_MODES['denovo_dock'] = 'De novo design (with HDOCK)'
DESIGN_MODES['opt'] = 'Optimization'
DESIGN_MODES['fixbb'] = 'Fix-backbone'

MODE_CONFIG = {
    'denovo': './configs/test/codesign_multicdrs.yml',
    'denovo_dock': './configs/test/codesign_multicdrs.yml',
    'opt': './configs/test/abopt_singlecdr.yml',
    'fixbb': './configs/test/fixbb.yml',
}

GPU_AVAILABLE = torch.cuda.is_available()
DEFAULT_NUM_SAMPLES = 5 if GPU_AVAILABLE else 1
DEFAULT_NUM_DOCKS = 3


def dict_to_func(d):
    def f(x):
        return d[x]
    return f


def get_config(save_dir, mode, cdrs, num_samples=5, optimization_step=4):
    tmpl_path = MODE_CONFIG[mode]
    with open(tmpl_path, 'r') as f:
        cfg = yaml.safe_load(f)
    cfg['sampling']['cdrs'] = cdrs
    cfg['sampling']['num_samples'] = num_samples
    cfg['sampling']['optimize_steps'] = [optimization_step, ]

    save_path = os.path.join(save_dir, 'design.yml')
    with open(save_path, 'w') as f:
        yaml.dump(cfg, f)
    return cfg, save_path


def run_design(pdb_path, config_path, output_dir, docking, display_widget, num_docks=DEFAULT_NUM_DOCKS):
    if docking:
        cmd = f"python design_dock.py --antigen {pdb_path} --config {config_path} --num_docks {num_docks} "
    else:
        cmd = f"python design_pdb.py {pdb_path} --config {config_path} "
    cmd += f"--batch_size 1 --out_root {output_dir} "

    if GPU_AVAILABLE:
        cmd += "--device cuda"
    else:
        cmd += "--device cpu"

    result_dir = os.path.join(output_dir, 'design')
    if os.path.exists(result_dir):
        shutil.rmtree(result_dir)
    
    output_buffer = ''
    proc = subprocess.Popen(
        cmd,
        shell=True,
        env=os.environ.copy(),
        bufsize=1,
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT,
        cwd=os.getcwd(),
    )
    for line in iter(proc.stdout.readline, b''):
        output_buffer += line.decode()

        display_widget.code( 
            '\n'.join(output_buffer.splitlines()[-10:]),
        )
    proc.stdout.close()
    proc.wait()


@st.cache
def renumber_antibody_cached(in_pdb, out_pdb, file_id):
    return renumber_antibody(
        in_pdb, out_pdb, return_other_chains=True
    )


def gather_results(result_dir):
    outputs = []
    for root, dirs, files in os.walk(result_dir):
        for fname in files:
            if not re.match('^\d\d\d\d\.pdb$', fname):
                continue
            fpath = os.path.join(root, fname)
            gname = os.path.basename(root)

            outputs.append((gname, fname, fpath))
    
    parser = PDB.PDBParser(QUIET=True)
    records = []
    fpath_to_name = {}
    for gname, fname, fpath in tqdm(outputs):
        name = f"{gname}_{fname}"
        structure = parser.get_structure(name, fpath)
        model = structure[0]
        record = {
            'name': name,
            'H1': None, 'H2': None, 'H3': None,
            'L1': None, 'L2': None, 'L3': None,
            'gname': gname, 'fname': fname, 'fpath': fpath,
        }
        for chain in model:
            try:
                seq, reslist = biopython_chain_to_sequence(chain)
                numbers, abchain = assign_number_to_sequence(seq)
                if abchain.chain_type == 'H':
                    record['H1'] = abchain.cdr1_seq
                    record['H2'] = abchain.cdr2_seq
                    record['H3'] = abchain.cdr3_seq
                elif abchain.chain_type in ('L', 'K'):
                    record['L1'] = abchain.cdr1_seq
                    record['L2'] = abchain.cdr2_seq
                    record['L3'] = abchain.cdr3_seq
            except abnumber.ChainParseError as e:
                pass
        records.append(record)
        fpath_to_name[fpath] = name

    with tarfile.open(os.path.join(result_dir, 'generated.tar.gz'), 'w:gz') as tar:
        for record in records:
            info = tar.gettarinfo(record['fpath'])
            info.name = record['name']
            tar.addfile(
                tarinfo = info,
                fileobj = open(record['fpath'], 'rb'),
            )
    
    records = pd.DataFrame(records)

    return records, fpath_to_name


def main():
    # Temporary workspace directory
    if 'tempdir_path' not in st.session_state:
        tempdir_path = tempfile.mkdtemp(prefix='streamlit')
        st.session_state.tempdir_path = tempdir_path
    else:
        tempdir_path = st.session_state.tempdir_path
    # Page layout
    st.set_page_config(layout="wide")
    st.markdown(
        "# DiffAb \n\n"
        "Antigen-Specific Antibody Design and Optimization with Diffusion-Based Generative Models for Protein Structures (NeurIPS 2022) \n\n"
        "[[Paper](https://www.biorxiv.org/content/10.1101/2022.07.10.499510.abstract)] "
        "[[Code](https://github.com/luost26/diffab)]"
    )
    left_col, right_col = st.columns(2)

    # Step 1: Upload PDB or choose an example
    uploaded_file = None
    with left_col:
        uploaded_file = st.file_uploader(
            'Antigen structure or antibody-antigen complex',
            # disabled=True
        )

        if uploaded_file is None:
            st.session_state.submit = False
            st.session_state.done = False

            with st.expander("Don't know what to upload? Try these examples", expanded=True):
                with open('./data/examples/7DK2_AB_C.pdb', 'r') as f:
                    st.download_button(
                        'RBD + Antibody Complex', 
                        data = f,
                        file_name='RBD_AbAg.pdb',
                    )
                with open('./data/examples/Omicron_RBD.pdb', 'r') as f:
                    st.download_button(
                        'RBD Antigen Only (Much slower)', 
                        data = f,
                        file_name = 'RBD_AgOnly.pdb',
                    )
                st.text('Please upload the downloaded PDB file to run the demo.')

    # Step 1.2: Retrieve uploaded PDB
    if uploaded_file is not None:
        pdb_path = os.path.join(tempdir_path, 'structure.pdb')
        renum_path = os.path.join(tempdir_path, 'structure_renumber.pdb')
        with open(pdb_path, 'w') as f:
            f.write(uploaded_file.getvalue().decode())
        H_chains, L_chains, Ag_chains = renumber_antibody_cached(
            in_pdb = pdb_path,
            out_pdb = renum_path,
            file_id = uploaded_file.id
        )
        H_chain = H_chains[0] if H_chains else None
        L_chain = L_chains[0] if L_chains else None
        docking = H_chain is None and L_chain is None

    # Step 2: Design options
    if uploaded_file is not None:
        with left_col:
            st.dataframe(pd.DataFrame({
                'Heavy': {'Chain': H_chain},
                'Light': {'Chain': L_chain},
                'Antigen': {'Chain': ','.join(Ag_chains)},
            }))

            if docking:
                st.warning('No antibodies detected. Will try to run docking (very slow).')

            # form = st.form('design_form')
            form = st.container()
            with form:
                if H_chain is None and L_chain is None:
                    # Antigen only
                    cdr_options = ['H_CDR1', 'H_CDR2', 'H_CDR3', 'L_CDR1', 'L_CDR2', 'L_CDR3']
                    cdr_default = ['H_CDR1', 'H_CDR2', 'H_CDR3']
                    mode_options = ['denovo_dock']
                elif H_chain is not None and L_chain is None:
                    # Heavy chain + Antigen
                    cdr_options = ['H_CDR1', 'H_CDR2', 'H_CDR3']
                    cdr_default = ['H_CDR1', 'H_CDR2', 'H_CDR3']
                    mode_options = ['denovo', 'opt', 'fixbb']
                elif H_chain is None and L_chain is not None:
                    # Light chain + Antigen
                    cdr_options = ['L_CDR1', 'L_CDR2', 'L_CDR3']
                    cdr_default = ['L_CDR1', 'L_CDR2', 'L_CDR3']
                    mode_options = ['denovo', 'opt', 'fixbb']
                else:
                    # H + L + Ag
                    cdr_options = ['H_CDR1', 'H_CDR2', 'H_CDR3', 'L_CDR1', 'L_CDR2', 'L_CDR3']
                    cdr_default = ['H_CDR1', 'H_CDR2', 'H_CDR3']
                    mode_options = ['denovo', 'opt', 'fixbb']
                
                design_mode = st.radio(
                    'Mode',
                    mode_options,
                    format_func=dict_to_func(DESIGN_MODES),
                    # disabled=True,
                )
                cdr_choices = st.multiselect(
                    'CDRs',
                    cdr_options,
                    default = cdr_default,
                    format_func=dict_to_func(CDR_OPTIONS),
                    # disabled=True,
                )

                if docking:
                    num_docks = st.slider(
                        'Number of docking poses', 
                        min_value=1, max_value=10, value=DEFAULT_NUM_DOCKS,
                    )
                else:
                    num_docks = 0
                num_designs = st.slider(
                    'Number of samples',
                    min_value=1, max_value=10, value=DEFAULT_NUM_SAMPLES,
                )

                if not GPU_AVAILABLE:
                    st.warning('No GPU available. Sampling might be very slow.')

                btn_placeholder = st.empty()
                submit = btn_placeholder.button('Run', key="run_btn_real")
                st.session_state.submit = st.session_state.submit or submit
                if submit:
                    st.session_state.done = False
                    btn_placeholder.empty()

    # Step 3: Prepare configuration and run design
    if uploaded_file is not None and st.session_state.submit:

        with left_col:
            output_display = st.empty()

        with right_col:
            result_molecule_display = st.empty()
            result_select_widget = st.empty()
            result_table_display = st.empty()
            result_download_btn = st.empty()

        if not st.session_state.done:
            output_display.code('[INFO] Your job has been submitted. Please wait...\n')

            config, config_path = get_config(
                save_dir = tempdir_path,
                mode = design_mode,
                cdrs = cdr_choices,
                num_samples = num_designs,
            )

            run_design(
                pdb_path = renum_path,
                config_path = config_path,
                output_dir = tempdir_path,
                docking = docking,
                display_widget = output_display,
                num_docks = num_docks,
            )
            st.session_state.done = True
    
            result_dir = os.path.join(tempdir_path, 'design')
            df_cols = ['name'] + list(CDR_OPTIONS.values())
            df_results, fpath_to_name = gather_results(result_dir)
            st.session_state.results = (df_results, fpath_to_name)

    # Step 5: Show results:
    if st.session_state.submit and st.session_state.done:
        result_dir = os.path.join(tempdir_path, 'design')
        df_results, fpath_to_name = st.session_state.results

        df_cols = ['name'] + list(CDR_OPTIONS.values())
        result_table_display.dataframe(df_results[df_cols])

        display_pdb_path = result_select_widget.selectbox(
            label = "Visualize",
            options = df_results['fpath'],
            format_func = dict_to_func(fpath_to_name),
        )

        with open(os.path.join(result_dir, 'generated.tar.gz'), 'rb') as f:
            result_download_btn.download_button(
                label = "Download PDBs",
                data = f,
                file_name = "generated.tar.gz",
            )

        if not os.path.exists(display_pdb_path):
            display_pdb_path = df_results['fpath'][0]
        with open(display_pdb_path, 'r') as f:
            pdb_str = f.read()
        xyzview = py3Dmol.view(width=380, height=380)
        xyzview.addModelsAsFrames(pdb_str)
        xyzview.setStyle({'cartoon':{'color':'spectrum'}})
        xyzview.zoomTo()
        with result_molecule_display:
            stmol.showmol(xyzview, width=380, height=380)
    

if __name__ == '__main__':
    main()