Spaces:
Sleeping
Sleeping
File size: 14,061 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
from models.BaseNetwork import BaseNetwork
from models.transformer_base.ffn_base import FusionFeedForward
from models.transformer_base.attention_flow import SWMHSA_depthGlobalWindowConcatLN_qkFlow_reweightFlow
from models.transformer_base.attention_base import TMHSA
import torch
import torch.nn as nn
from functools import reduce
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, config):
super(Model, self).__init__()
self.net = FGT(config['tw'], config['sw'], config['gd'], config['input_resolution'], config['in_channel'],
config['cnum'], config['flow_inChannel'], config['flow_cnum'], config['frame_hidden'],
config['flow_hidden'], config['PASSMASK'],
config['numBlocks'], config['kernel_size'], config['stride'], config['padding'],
config['num_head'], config['conv_type'], config['norm'],
config['use_bias'], config['ape'],
config['mlp_ratio'], config['drop'], config['init_weights'])
def forward(self, frames, flows, masks):
ret = self.net(frames, flows, masks)
return ret
class Encoder(nn.Module):
def __init__(self, in_channels):
super(Encoder, self).__init__()
self.group = [1, 2, 4, 8, 1]
self.layers = nn.ModuleList([
nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1, groups=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(640, 512, kernel_size=3, stride=1, padding=1, groups=2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(768, 384, kernel_size=3, stride=1, padding=1, groups=4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(640, 256, kernel_size=3, stride=1, padding=1, groups=8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 128, kernel_size=3, stride=1, padding=1, groups=1),
nn.LeakyReLU(0.2, inplace=True)
])
def forward(self, x):
bt, c, h, w = x.size()
h, w = h // 4, w // 4
out = x
for i, layer in enumerate(self.layers):
if i == 8:
x0 = out
if i > 8 and i % 2 == 0:
g = self.group[(i - 8) // 2]
x = x0.view(bt, g, -1, h, w)
o = out.view(bt, g, -1, h, w)
out = torch.cat([x, o], 2).view(bt, -1, h, w)
out = layer(out)
return out
class AddPosEmb(nn.Module):
def __init__(self, h, w, in_channels, out_channels):
super(AddPosEmb, self).__init__()
self.proj = nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=True, groups=out_channels)
self.h, self.w = h, w
def forward(self, x, h=0, w=0):
B, N, C = x.shape
if h == 0 and w == 0:
assert N == self.h * self.w, 'Wrong input size'
else:
assert N == h * w, 'Wrong input size during inference'
feat_token = x
if h == 0 and w == 0:
cnn_feat = feat_token.transpose(1, 2).view(B, C, self.h, self.w)
else:
cnn_feat = feat_token.transpose(1, 2).view(B, C, h, w)
x = self.proj(cnn_feat) + cnn_feat
x = x.flatten(2).transpose(1, 2)
return x
class Vec2Patch(nn.Module):
def __init__(self, channel, hidden, output_size, kernel_size, stride, padding):
super(Vec2Patch, self).__init__()
self.relu = nn.LeakyReLU(0.2, inplace=True)
c_out = reduce((lambda x, y: x * y), kernel_size) * channel
self.embedding = nn.Linear(hidden, c_out)
self.restore = nn.Fold(output_size=output_size, kernel_size=kernel_size, stride=stride, padding=padding)
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
def forward(self, x, output_h=0, output_w=0):
feat = self.embedding(x)
feat = feat.permute(0, 2, 1)
if output_h != 0 or output_w != 0:
feat = F.fold(feat, output_size=(output_h, output_w), kernel_size=self.kernel_size, stride=self.stride,
padding=self.padding)
else:
feat = self.restore(feat)
return feat
class TemporalTransformer(nn.Module):
def __init__(self, token_size, frame_hidden, num_heads, t_groupSize, mlp_ratio, dropout, n_vecs,
t2t_params):
super(TemporalTransformer, self).__init__()
self.attention = TMHSA(token_size=token_size, group_size=t_groupSize, d_model=frame_hidden, head=num_heads,
p=dropout)
self.ffn = FusionFeedForward(frame_hidden, mlp_ratio, n_vecs, t2t_params, p=dropout)
self.norm1 = nn.LayerNorm(frame_hidden)
self.norm2 = nn.LayerNorm(frame_hidden)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x, t, h, w, output_size):
token_size = h * w
s = self.norm1(x)
x = x + self.dropout(self.attention(s, t, h, w))
y = self.norm2(x)
x = x + self.ffn(y, token_size, output_size[0], output_size[1])
return x
class SpatialTransformer(nn.Module):
def __init__(self, token_size, frame_hidden, flow_hidden, num_heads, s_windowSize, g_downSize, mlp_ratio,
dropout, n_vecs, t2t_params):
super(SpatialTransformer, self).__init__()
self.attention = SWMHSA_depthGlobalWindowConcatLN_qkFlow_reweightFlow(token_size=token_size, window_size=s_windowSize,
kernel_size=g_downSize, d_model=frame_hidden,
flow_dModel=flow_hidden, head=num_heads, p=dropout)
self.ffn = FusionFeedForward(frame_hidden, mlp_ratio, n_vecs, t2t_params, p=dropout)
self.norm = nn.LayerNorm(frame_hidden)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x, f, t, h, w, output_size):
token_size = h * w
x = x + self.dropout(self.attention(x, f, t, h, w))
y = self.norm(x)
x = x + self.ffn(y, token_size, output_size[0], output_size[1])
return x
class TransformerBlock(nn.Module):
def __init__(self, token_size, frame_hidden, flow_hidden, num_heads, t_groupSize, s_windowSize, g_downSize,
mlp_ratio,
dropout, n_vecs,
t2t_params):
super(TransformerBlock, self).__init__()
self.t_transformer = TemporalTransformer(token_size=token_size, frame_hidden=frame_hidden, num_heads=num_heads,
t_groupSize=t_groupSize, mlp_ratio=mlp_ratio,
dropout=dropout, n_vecs=n_vecs,
t2t_params=t2t_params) # temporal multi-head self attention
self.s_transformer = SpatialTransformer(token_size=token_size, frame_hidden=frame_hidden,
flow_hidden=flow_hidden, num_heads=num_heads, s_windowSize=s_windowSize,
g_downSize=g_downSize, mlp_ratio=mlp_ratio,
dropout=dropout, n_vecs=n_vecs, t2t_params=t2t_params)
def forward(self, inputs):
x, f, t = inputs['x'], inputs['f'], inputs['t']
h, w = inputs['h'], inputs['w']
output_size = inputs['output_size']
x = self.t_transformer(x, t, h, w, output_size)
x = self.s_transformer(x, f, t, h, w, output_size)
return {'x': x, 'f': f, 't': t, 'h': h, 'w': w, 'output_size': output_size}
class Decoder(BaseNetwork):
def __init__(self, conv_type, in_channels, out_channels, use_bias, norm=None):
super(Decoder, self).__init__(conv_type)
self.layer1 = self.DeconvBlock(in_channels, in_channels, kernel_size=3, padding=1, norm=norm,
bias=use_bias)
self.layer2 = self.ConvBlock(in_channels, in_channels // 2, kernel_size=3, stride=1, padding=1, norm=norm,
bias=use_bias)
self.layer3 = self.DeconvBlock(in_channels // 2, in_channels // 2, kernel_size=3, padding=1, norm=norm,
bias=use_bias)
self.final = self.ConvBlock(in_channels // 2, out_channels, kernel_size=3, stride=1, padding=1, norm=norm,
bias=use_bias, activation=None)
def forward(self, features):
feat1 = self.layer1(features)
feat2 = self.layer2(feat1)
feat3 = self.layer3(feat2)
output = self.final(feat3)
return output
class FGT(BaseNetwork):
def __init__(self, t_groupSize, s_windowSize, g_downSize, input_resolution, in_channels, cnum, flow_inChannel,
flow_cnum,
frame_hidden, flow_hidden, passmask, numBlocks, kernel_size, stride, padding, num_heads, conv_type,
norm, use_bias, ape, mlp_ratio=4, drop=0, init_weights=True):
super(FGT, self).__init__(conv_type)
self.in_channels = in_channels
self.passmask = passmask
self.ape = ape
self.frame_endoder = Encoder(in_channels)
self.flow_encoder = nn.Sequential(
nn.ReplicationPad2d(2),
self.ConvBlock(flow_inChannel, flow_cnum, kernel_size=5, stride=1, padding=0, bias=use_bias, norm=norm),
self.ConvBlock(flow_cnum, flow_cnum * 2, kernel_size=3, stride=2, padding=1, bias=use_bias, norm=norm),
self.ConvBlock(flow_cnum * 2, flow_cnum * 2, kernel_size=3, stride=1, padding=1, bias=use_bias, norm=norm),
self.ConvBlock(flow_cnum * 2, flow_cnum * 2, kernel_size=3, stride=2, padding=1, bias=use_bias, norm=norm)
)
# patch to vector operation
self.patch2vec = nn.Conv2d(cnum * 2, frame_hidden, kernel_size=kernel_size, stride=stride, padding=padding)
self.f_patch2vec = nn.Conv2d(flow_cnum * 2, flow_hidden, kernel_size=kernel_size, stride=stride,
padding=padding)
# initialize transformer blocks for frame completion
n_vecs = 1
token_size = []
output_shape = (input_resolution[0] // 4, input_resolution[1] // 4)
for i, d in enumerate(kernel_size):
token_nums = int((output_shape[i] + 2 * padding[i] - kernel_size[i]) / stride[i] + 1)
n_vecs *= token_nums
token_size.append(token_nums)
# Add positional embedding to the encode features
if self.ape:
self.add_pos_emb = AddPosEmb(token_size[0], token_size[1], frame_hidden, frame_hidden)
self.token_size = token_size
# initialize transformer blocks
blocks = []
t2t_params = {'kernel_size': kernel_size, 'stride': stride, 'padding': padding, 'output_size': output_shape}
for i in range(numBlocks // 2 - 1):
layer = TransformerBlock(token_size, frame_hidden, flow_hidden, num_heads, t_groupSize, s_windowSize,
g_downSize, mlp_ratio, drop, n_vecs, t2t_params)
blocks.append(layer)
self.first_t_transformer = TemporalTransformer(token_size, frame_hidden, num_heads, t_groupSize, mlp_ratio,
drop, n_vecs, t2t_params)
self.first_s_transformer = SpatialTransformer(token_size, frame_hidden, flow_hidden, num_heads, s_windowSize,
g_downSize, mlp_ratio, drop, n_vecs, t2t_params)
self.transformer = nn.Sequential(*blocks)
# vector to patch operation
self.vec2patch = Vec2Patch(cnum * 2, frame_hidden, output_shape, kernel_size, stride, padding)
# decoder
self.decoder = Decoder(conv_type, cnum * 2, 3, use_bias, norm)
if init_weights:
self.init_weights()
def forward(self, masked_frames, flows, masks):
b, t, c, h, w = masked_frames.shape
cf = flows.shape[2]
output_shape = (h // 4, w // 4)
if self.passmask:
inputs = torch.cat((masked_frames, masks), dim=2)
else:
inputs = masked_frames
inputs = inputs.view(b * t, self.in_channels, h, w)
flows = flows.view(b * t, cf, h, w)
enc_feats = self.frame_endoder(inputs)
flow_feats = self.flow_encoder(flows)
trans_feat = self.patch2vec(enc_feats)
flow_patches = self.f_patch2vec(flow_feats)
_, c, h, w = trans_feat.shape
cf = flow_patches.shape[1]
if h != self.token_size[0] or w != self.token_size[1]:
new_h, new_w = h, w
else:
new_h, new_w = 0, 0
output_shape = (0, 0)
trans_feat = trans_feat.view(b * t, c, -1).permute(0, 2, 1)
flow_patches = flow_patches.view(b * t, cf, -1).permute(0, 2, 1)
trans_feat = self.first_t_transformer(trans_feat, t, new_h, new_w, output_shape)
trans_feat = self.add_pos_emb(trans_feat, new_h, new_w)
trans_feat = self.first_s_transformer(trans_feat, flow_patches, t, new_h, new_w, output_shape)
inputs_trans_feat = {'x': trans_feat, 'f': flow_patches, 't': t, 'h': new_h, 'w': new_w,
'output_size': output_shape}
trans_feat = self.transformer(inputs_trans_feat)['x']
trans_feat = self.vec2patch(trans_feat, output_shape[0], output_shape[1])
enc_feats = enc_feats + trans_feat
output = self.decoder(enc_feats)
output = torch.tanh(output)
return output
|