File size: 14,061 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from models.BaseNetwork import BaseNetwork
from models.transformer_base.ffn_base import FusionFeedForward
from models.transformer_base.attention_flow import SWMHSA_depthGlobalWindowConcatLN_qkFlow_reweightFlow
from models.transformer_base.attention_base import TMHSA

import torch
import torch.nn as nn
from functools import reduce
import torch.nn.functional as F


class Model(nn.Module):
    def __init__(self, config):
        super(Model, self).__init__()
        self.net = FGT(config['tw'], config['sw'], config['gd'], config['input_resolution'], config['in_channel'],
                        config['cnum'], config['flow_inChannel'], config['flow_cnum'], config['frame_hidden'],
                        config['flow_hidden'], config['PASSMASK'],
                        config['numBlocks'], config['kernel_size'], config['stride'], config['padding'],
                        config['num_head'], config['conv_type'], config['norm'],
                        config['use_bias'], config['ape'],
                        config['mlp_ratio'], config['drop'], config['init_weights'])

    def forward(self, frames, flows, masks):
        ret = self.net(frames, flows, masks)
        return ret


class Encoder(nn.Module):
    def __init__(self, in_channels):
        super(Encoder, self).__init__()
        self.group = [1, 2, 4, 8, 1]
        self.layers = nn.ModuleList([
            nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1, groups=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(640, 512, kernel_size=3, stride=1, padding=1, groups=2),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(768, 384, kernel_size=3, stride=1, padding=1, groups=4),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(640, 256, kernel_size=3, stride=1, padding=1, groups=8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(512, 128, kernel_size=3, stride=1, padding=1, groups=1),
            nn.LeakyReLU(0.2, inplace=True)
        ])

    def forward(self, x):
        bt, c, h, w = x.size()
        h, w = h // 4, w // 4
        out = x
        for i, layer in enumerate(self.layers):
            if i == 8:
                x0 = out
            if i > 8 and i % 2 == 0:
                g = self.group[(i - 8) // 2]
                x = x0.view(bt, g, -1, h, w)
                o = out.view(bt, g, -1, h, w)
                out = torch.cat([x, o], 2).view(bt, -1, h, w)
            out = layer(out)
        return out


class AddPosEmb(nn.Module):
    def __init__(self, h, w, in_channels, out_channels):
        super(AddPosEmb, self).__init__()
        self.proj = nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=True, groups=out_channels)
        self.h, self.w = h, w

    def forward(self, x, h=0, w=0):
        B, N, C = x.shape
        if h == 0 and w == 0:
            assert N == self.h * self.w, 'Wrong input size'
        else:
            assert N == h * w, 'Wrong input size during inference'
        feat_token = x
        if h == 0 and w == 0:
            cnn_feat = feat_token.transpose(1, 2).view(B, C, self.h, self.w)
        else:
            cnn_feat = feat_token.transpose(1, 2).view(B, C, h, w)
        x = self.proj(cnn_feat) + cnn_feat
        x = x.flatten(2).transpose(1, 2)
        return x


class Vec2Patch(nn.Module):
    def __init__(self, channel, hidden, output_size, kernel_size, stride, padding):
        super(Vec2Patch, self).__init__()
        self.relu = nn.LeakyReLU(0.2, inplace=True)
        c_out = reduce((lambda x, y: x * y), kernel_size) * channel
        self.embedding = nn.Linear(hidden, c_out)
        self.restore = nn.Fold(output_size=output_size, kernel_size=kernel_size, stride=stride, padding=padding)
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding

    def forward(self, x, output_h=0, output_w=0):
        feat = self.embedding(x)
        feat = feat.permute(0, 2, 1)
        if output_h != 0 or output_w != 0:
            feat = F.fold(feat, output_size=(output_h, output_w), kernel_size=self.kernel_size, stride=self.stride,
                          padding=self.padding)
        else:
            feat = self.restore(feat)
        return feat


class TemporalTransformer(nn.Module):
    def __init__(self, token_size, frame_hidden, num_heads, t_groupSize, mlp_ratio, dropout, n_vecs,
                 t2t_params):
        super(TemporalTransformer, self).__init__()
        self.attention = TMHSA(token_size=token_size, group_size=t_groupSize, d_model=frame_hidden, head=num_heads,
                               p=dropout)
        self.ffn = FusionFeedForward(frame_hidden, mlp_ratio, n_vecs, t2t_params, p=dropout)
        self.norm1 = nn.LayerNorm(frame_hidden)
        self.norm2 = nn.LayerNorm(frame_hidden)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, t, h, w, output_size):
        token_size = h * w
        s = self.norm1(x)
        x = x + self.dropout(self.attention(s, t, h, w))
        y = self.norm2(x)
        x = x + self.ffn(y, token_size, output_size[0], output_size[1])
        return x


class SpatialTransformer(nn.Module):
    def __init__(self, token_size, frame_hidden, flow_hidden, num_heads, s_windowSize, g_downSize, mlp_ratio,
                 dropout, n_vecs, t2t_params):
        super(SpatialTransformer, self).__init__()
        self.attention = SWMHSA_depthGlobalWindowConcatLN_qkFlow_reweightFlow(token_size=token_size, window_size=s_windowSize,
                                                                kernel_size=g_downSize, d_model=frame_hidden,
                                                                flow_dModel=flow_hidden, head=num_heads, p=dropout)
        self.ffn = FusionFeedForward(frame_hidden, mlp_ratio, n_vecs, t2t_params, p=dropout)
        self.norm = nn.LayerNorm(frame_hidden)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, f, t, h, w, output_size):
        token_size = h * w
        x = x + self.dropout(self.attention(x, f, t, h, w))
        y = self.norm(x)
        x = x + self.ffn(y, token_size, output_size[0], output_size[1])
        return x


class TransformerBlock(nn.Module):
    def __init__(self, token_size, frame_hidden, flow_hidden, num_heads, t_groupSize, s_windowSize, g_downSize,
                 mlp_ratio,
                 dropout, n_vecs,
                 t2t_params):
        super(TransformerBlock, self).__init__()
        self.t_transformer = TemporalTransformer(token_size=token_size, frame_hidden=frame_hidden, num_heads=num_heads,
                                                 t_groupSize=t_groupSize, mlp_ratio=mlp_ratio,
                                                 dropout=dropout, n_vecs=n_vecs,
                                                 t2t_params=t2t_params)  # temporal multi-head self attention
        self.s_transformer = SpatialTransformer(token_size=token_size, frame_hidden=frame_hidden,
                                                flow_hidden=flow_hidden, num_heads=num_heads, s_windowSize=s_windowSize,
                                                g_downSize=g_downSize, mlp_ratio=mlp_ratio,
                                                dropout=dropout, n_vecs=n_vecs, t2t_params=t2t_params)

    def forward(self, inputs):
        x, f, t = inputs['x'], inputs['f'], inputs['t']
        h, w = inputs['h'], inputs['w']
        output_size = inputs['output_size']
        x = self.t_transformer(x, t, h, w, output_size)
        x = self.s_transformer(x, f, t, h, w, output_size)
        return {'x': x, 'f': f, 't': t, 'h': h, 'w': w, 'output_size': output_size}


class Decoder(BaseNetwork):
    def __init__(self, conv_type, in_channels, out_channels, use_bias, norm=None):
        super(Decoder, self).__init__(conv_type)
        self.layer1 = self.DeconvBlock(in_channels, in_channels, kernel_size=3, padding=1, norm=norm,
                                       bias=use_bias)
        self.layer2 = self.ConvBlock(in_channels, in_channels // 2, kernel_size=3, stride=1, padding=1, norm=norm,
                                     bias=use_bias)
        self.layer3 = self.DeconvBlock(in_channels // 2, in_channels // 2, kernel_size=3, padding=1, norm=norm,
                                       bias=use_bias)
        self.final = self.ConvBlock(in_channels // 2, out_channels, kernel_size=3, stride=1, padding=1, norm=norm,
                                    bias=use_bias, activation=None)

    def forward(self, features):
        feat1 = self.layer1(features)
        feat2 = self.layer2(feat1)
        feat3 = self.layer3(feat2)
        output = self.final(feat3)
        return output


class FGT(BaseNetwork):
    def __init__(self, t_groupSize, s_windowSize, g_downSize, input_resolution, in_channels, cnum, flow_inChannel,
                 flow_cnum,
                 frame_hidden, flow_hidden, passmask, numBlocks, kernel_size, stride, padding, num_heads, conv_type,
                 norm, use_bias, ape, mlp_ratio=4, drop=0, init_weights=True):
        super(FGT, self).__init__(conv_type)
        self.in_channels = in_channels
        self.passmask = passmask
        self.ape = ape
        self.frame_endoder = Encoder(in_channels)
        self.flow_encoder = nn.Sequential(
            nn.ReplicationPad2d(2),
            self.ConvBlock(flow_inChannel, flow_cnum, kernel_size=5, stride=1, padding=0, bias=use_bias, norm=norm),
            self.ConvBlock(flow_cnum, flow_cnum * 2, kernel_size=3, stride=2, padding=1, bias=use_bias, norm=norm),
            self.ConvBlock(flow_cnum * 2, flow_cnum * 2, kernel_size=3, stride=1, padding=1, bias=use_bias, norm=norm),
            self.ConvBlock(flow_cnum * 2, flow_cnum * 2, kernel_size=3, stride=2, padding=1, bias=use_bias, norm=norm)
        )
        # patch to vector operation
        self.patch2vec = nn.Conv2d(cnum * 2, frame_hidden, kernel_size=kernel_size, stride=stride, padding=padding)
        self.f_patch2vec = nn.Conv2d(flow_cnum * 2, flow_hidden, kernel_size=kernel_size, stride=stride,
                                     padding=padding)
        # initialize transformer blocks for frame completion
        n_vecs = 1
        token_size = []
        output_shape = (input_resolution[0] // 4, input_resolution[1] // 4)
        for i, d in enumerate(kernel_size):
            token_nums = int((output_shape[i] + 2 * padding[i] - kernel_size[i]) / stride[i] + 1)
            n_vecs *= token_nums
            token_size.append(token_nums)
        # Add positional embedding to the encode features
        if self.ape:
            self.add_pos_emb = AddPosEmb(token_size[0], token_size[1], frame_hidden, frame_hidden)
        self.token_size = token_size
        # initialize transformer blocks
        blocks = []
        t2t_params = {'kernel_size': kernel_size, 'stride': stride, 'padding': padding, 'output_size': output_shape}
        for i in range(numBlocks // 2 - 1):
            layer = TransformerBlock(token_size, frame_hidden, flow_hidden, num_heads, t_groupSize, s_windowSize,
                                     g_downSize, mlp_ratio, drop, n_vecs, t2t_params)
            blocks.append(layer)
        self.first_t_transformer = TemporalTransformer(token_size, frame_hidden, num_heads, t_groupSize, mlp_ratio,
                                                       drop, n_vecs, t2t_params)
        self.first_s_transformer = SpatialTransformer(token_size, frame_hidden, flow_hidden, num_heads, s_windowSize,
                                                      g_downSize, mlp_ratio, drop, n_vecs, t2t_params)
        self.transformer = nn.Sequential(*blocks)
        # vector to patch operation
        self.vec2patch = Vec2Patch(cnum * 2, frame_hidden, output_shape, kernel_size, stride, padding)
        # decoder
        self.decoder = Decoder(conv_type, cnum * 2, 3, use_bias, norm)

        if init_weights:
            self.init_weights()

    def forward(self, masked_frames, flows, masks):
        b, t, c, h, w = masked_frames.shape
        cf = flows.shape[2]
        output_shape = (h // 4, w // 4)
        if self.passmask:
            inputs = torch.cat((masked_frames, masks), dim=2)
        else:
            inputs = masked_frames
        inputs = inputs.view(b * t, self.in_channels, h, w)
        flows = flows.view(b * t, cf, h, w)
        enc_feats = self.frame_endoder(inputs)
        flow_feats = self.flow_encoder(flows)
        trans_feat = self.patch2vec(enc_feats)
        flow_patches = self.f_patch2vec(flow_feats)
        _, c, h, w = trans_feat.shape
        cf = flow_patches.shape[1]
        if h != self.token_size[0] or w != self.token_size[1]:
            new_h, new_w = h, w
        else:
            new_h, new_w = 0, 0
            output_shape = (0, 0)
        trans_feat = trans_feat.view(b * t, c, -1).permute(0, 2, 1)
        flow_patches = flow_patches.view(b * t, cf, -1).permute(0, 2, 1)
        trans_feat = self.first_t_transformer(trans_feat, t, new_h, new_w, output_shape)
        trans_feat = self.add_pos_emb(trans_feat, new_h, new_w)
        trans_feat = self.first_s_transformer(trans_feat, flow_patches, t, new_h, new_w, output_shape)
        inputs_trans_feat = {'x': trans_feat, 'f': flow_patches, 't': t, 'h': new_h, 'w': new_w,
                             'output_size': output_shape}
        trans_feat = self.transformer(inputs_trans_feat)['x']
        trans_feat = self.vec2patch(trans_feat, output_shape[0], output_shape[1])
        enc_feats = enc_feats + trans_feat

        output = self.decoder(enc_feats)
        output = torch.tanh(output)
        return output