File size: 8,717 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import sys
import shutil
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))  # NOQA

import numpy as np
import argparse
from PIL import Image

from .mask_generators import get_video_masks_by_moving_random_stroke, get_masked_ratio
from .util import make_dirs, make_dir_under_root, get_everything_under
from .readers import MaskReader

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '-od', '--output_dir',
        type=str,
        help="Output directory name"
    )
    parser.add_argument(
        '-im',
        '--image_masks', action='store_true',
        help="Set this if you want to generate independent masks in one directory."
    )
    parser.add_argument(
        '-vl', '--video_len',
        type=int,
        help="Maximum video length (i.e. #mask)"
    )
    parser.add_argument(
        '-ns', '--num_stroke',
        type=int,
        help="Number of stroke in one mask"
    )
    parser.add_argument(
        '-nsb', '--num_stroke_bound',
        type=int,
        nargs=2,
        help="Upper/lower bound of number of stroke in one mask"
    )
    parser.add_argument(
        '-n',
        type=int,
        help="Number of mask to generate"
    )
    parser.add_argument(
        '-sp',
        '--stroke_preset',
        type=str,
        default='rand_curve',
        help="Preset of the stroke parameters"
    )
    parser.add_argument(
        '-iw',
        '--image_width',
        type=int,
        default=320
    )
    parser.add_argument(
        '-ih',
        '--image_height',
        type=int,
        default=180
    )
    parser.add_argument(
        '--cluster_by_area',
        action='store_true'
    )
    parser.add_argument(
        '--leave_boarder_unmasked',
        type=int,
        help='Set this to a number, then a copy of the mask where the mask of boarder is erased.'
    )
    parser.add_argument(
        '--redo_without_generation',
        action='store_true',
        help='Set this, and the script will skip the generation and redo the left tasks'
             '(uncluster -> erase boarder -> re-cluster)'
    )
    args = parser.parse_args()
    return args


def get_stroke_preset(stroke_preset):
    if stroke_preset == 'object_like':
        return {
            "nVertexBound": [5, 30],
            "maxHeadSpeed": 15,
            "maxHeadAcceleration": (10, 1.5),
            "brushWidthBound": (20, 50),
            "nMovePointRatio": 0.5,
            "maxPiontMove": 10,
            "maxLineAcceleration": (5, 0.5),
            "boarderGap": None,
            "maxInitSpeed": 10,
        }
    elif stroke_preset == 'object_like_middle':
        return {
            "nVertexBound": [5, 15],
            "maxHeadSpeed": 8,
            "maxHeadAcceleration": (4, 1.5),
            "brushWidthBound": (20, 50),
            "nMovePointRatio": 0.5,
            "maxPiontMove": 5,
            "maxLineAcceleration": (5, 0.5),
            "boarderGap": None,
            "maxInitSpeed": 10,
        }
    elif stroke_preset == 'object_like_small':
        return {
            "nVertexBound": [5, 20],
            "maxHeadSpeed": 7,
            "maxHeadAcceleration": (3.5, 1.5),
            "brushWidthBound": (10, 30),
            "nMovePointRatio": 0.5,
            "maxPiontMove": 5,
            "maxLineAcceleration": (3, 0.5),
            "boarderGap": None,
            "maxInitSpeed": 4,
        }
    elif stroke_preset == 'rand_curve':
        return {
            "nVertexBound": [10, 30],
            "maxHeadSpeed": 20,
            "maxHeadAcceleration": (15, 0.5),
            "brushWidthBound": (3, 10),
            "nMovePointRatio": 0.5,
            "maxPiontMove": 3,
            "maxLineAcceleration": (5, 0.5),
            "boarderGap": None,
            "maxInitSpeed": 6
        }
    elif stroke_preset == 'rand_curve_small':
        return {
            "nVertexBound": [6, 22],
            "maxHeadSpeed": 12,
            "maxHeadAcceleration": (8, 0.5),
            "brushWidthBound": (2.5, 5),
            "nMovePointRatio": 0.5,
            "maxPiontMove": 1.5,
            "maxLineAcceleration": (3, 0.5),
            "boarderGap": None,
            "maxInitSpeed": 3
        }
    else:
        raise NotImplementedError(f'The stroke presetting "{stroke_preset}" does not exist.')


def copy_masks_without_boarder(root_dir, args):
    def erase_mask_boarder(mask, gap):
        pix = np.asarray(mask).astype('uint8') * 255
        pix[:gap, :] = 255
        pix[-gap:, :] = 255
        pix[:, :gap] = 255
        pix[:, -gap:] = 255
        return Image.fromarray(pix).convert('1')

    wo_boarder_dir = root_dir + '_noBoarder'
    shutil.copytree(root_dir, wo_boarder_dir)

    for i, filename in enumerate(get_everything_under(wo_boarder_dir)):
        if args.image_masks:
            mask = Image.open(filename)
            mask_wo_boarder = erase_mask_boarder(mask, args.leave_boarder_unmasked)
            mask_wo_boarder.save(filename)
        else:
            # filename is a diretory containing multiple mask files
            for f in get_everything_under(filename, pattern='*.png'):
                mask = Image.open(f)
                mask_wo_boarder = erase_mask_boarder(mask, args.leave_boarder_unmasked)
                mask_wo_boarder.save(f)

    return wo_boarder_dir


def cluster_by_masked_area(root_dir, args):
    clustered_dir = root_dir + '_clustered'
    make_dirs(clustered_dir)
    radius = 5

    # all masks with ratio in x +- radius will be stored in sub-directory x
    clustered_centors = np.arange(radius, 100, radius * 2)
    clustered_subdirs = []
    for c in clustered_centors:
        # make sub-directories for each ratio range
        clustered_subdirs.append(make_dir_under_root(clustered_dir, str(c)))

    for i, filename in enumerate(get_everything_under(root_dir)):
        if args.image_masks:
            ratio = get_masked_ratio(Image.open(filename))
        else:
            # filename is a diretory containing multiple mask files
            ratio = np.mean([
                get_masked_ratio(Image.open(f))
                for f in get_everything_under(filename, pattern='*.png')
            ])

        # find the nearest centor
        for i, c in enumerate(clustered_centors):
            if c - radius <= ratio * 100 <= c + radius:
                shutil.move(filename, clustered_subdirs[i])
                break

    shutil.rmtree(root_dir)
    os.rename(clustered_dir, root_dir)


def decide_nStroke(args):
    if args.num_stroke is not None:
        return args.num_stroke
    elif args.num_stroke_bound is not None:
        return np.random.randint(args.num_stroke_bound[0], args.num_stroke_bound[1])
    else:
        raise ValueError('One of "-ns" or "-nsb" is needed')


def main(args):
    preset = get_stroke_preset(args.stroke_preset)
    make_dirs(args.output_dir)

    if args.redo_without_generation:
        assert(len(get_everything_under(args.output_dir)) > 0)
        # put back clustered masks
        for clustered_subdir in get_everything_under(args.output_dir):
            if not os.path.isdir(clustered_subdir):
                continue
            for f in get_everything_under(clustered_subdir):
                shutil.move(f, args.output_dir)
            os.rmdir(clustered_subdir)

    else:
        if args.image_masks:
            for i in range(args.n):
                nStroke = decide_nStroke(args)
                mask = get_video_masks_by_moving_random_stroke(
                    video_len=1, imageWidth=args.image_width, imageHeight=args.image_height,
                    nStroke=nStroke, **preset
                )[0]
                mask.save(os.path.join(args.output_dir, f'{i:07d}.png'))

        else:
            for i in range(args.n):
                mask_dir = make_dir_under_root(args.output_dir, f'{i:05d}')
                mask_reader = MaskReader(mask_dir, read=False)

                nStroke = decide_nStroke(args)
                masks = get_video_masks_by_moving_random_stroke(
                    imageWidth=args.image_width, imageHeight=args.image_height,
                    video_len=args.video_len, nStroke=nStroke, **preset)

                mask_reader.set_files(masks)
                mask_reader.save_files(output_dir=mask_reader.dir_name)

    if args.leave_boarder_unmasked is not None:
        dir_leave_boarder = copy_masks_without_boarder(args.output_dir, args)
        if args.cluster_by_area:
            cluster_by_masked_area(dir_leave_boarder, args)

    if args.cluster_by_area:
        cluster_by_masked_area(args.output_dir, args)


if __name__ == "__main__":
    args = parse_args()
    main(args)