File size: 7,726 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import math
import parse
import logging
from utils import util
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from data import create_dataset, create_dataloader
from models.utils.loss import *
import yaml
from models.utils.edgeLoss import EdgeLoss
from abc import abstractmethod, ABCMeta


class Trainer(metaclass=ABCMeta):
    def __init__(self, opt, rank):
        self.opt = opt
        self.rank = rank

        # make directory and set logger
        if rank <= 0:
            self.mkdir()
            self.logger, self.tb_logger = self.setLogger()
        self.setSeed()
        self.dataInfo, self.valInfo, self.trainSet, self.trainSize, self.totalIterations, self.totalEpochs, self.trainLoader, self.trainSampler = self.prepareDataset()
        self.model, self.optimizer, self.scheduler = self.init_model()
        self.model = self.model.to(self.opt['device'])
        if opt['path'].get('opt_state', None):
            self.startEpoch, self.currentStep = self.resume_training()
        else:
            self.startEpoch, self.currentStep = 0, 0
        if opt['distributed']:
            self.model = DDP(
                self.model,
                device_ids=[self.opt['local_rank']],
                output_device=self.opt['local_rank'],
                # find_unused_parameters=True
            )
        if self.rank <= 0:
            self.logger.info('Start training from epoch: {}, iter: {}'.format(
                self.startEpoch, self.currentStep))

        self.maskedLoss = nn.L1Loss()
        self.validLoss = nn.L1Loss()
        self.edgeLoss = EdgeLoss(self.opt['device'])
        self.countDown = 0

        # metrics recorder
        self.total_loss = 0
        self.total_psnr = 0
        self.total_ssim = 0
        self.total_l1 = 0
        self.total_l2 = 0

    def get_lr(self):
        lr = []
        for param_group in self.optimizer.param_groups:
            lr += [param_group['lr']]
        return lr

    def adjust_learning_rate(self, optimizer, target_lr):
        for param_group in optimizer.param_groups:
            param_group['lr'] = target_lr

    def mkdir(self):
        new_name = util.mkdir_and_rename(self.opt['path']['OUTPUT_ROOT'])
        if new_name:
            self.opt['path']['TRAINING_STATE'] = os.path.join(new_name, 'training_state')
            self.opt['path']['LOG'] = os.path.join(new_name, 'log')
            self.opt['path']['VAL_IMAGES'] = os.path.join(new_name, 'val_images')
        if not os.path.exists(self.opt['path']['TRAINING_STATE']):
            os.makedirs(self.opt['path']['TRAINING_STATE'])
        if not os.path.exists(self.opt['path']['LOG']):
            os.makedirs(self.opt['path']['LOG'])
        if not os.path.exists(self.opt['path']['VAL_IMAGES']):
            os.makedirs(self.opt['path']['VAL_IMAGES'])
        # save config file for output
        with open(os.path.join(self.opt['path']['LOG'], 'config.yaml'), 'w') as f:
            yaml.dump(self.opt, f)

    def setLogger(self):
        util.setup_logger('base', self.opt['path']['LOG'], 'train_' + self.opt['name'], level=logging.INFO,
                          screen=True, tofile=True)
        logger = logging.getLogger('base')
        logger.info(parse.toString(self.opt))
        logger.info('OUTPUT DIR IS: {}'.format(self.opt['path']['OUTPUT_ROOT']))
        if self.opt['use_tb_logger']:
            version = float(torch.__version__[0:3])
            if version >= 1.1:
                from torch.utils.tensorboard import SummaryWriter
            else:
                logger.info('You are using PyTorch {}, Tensorboard will use [tensorboardX)'.format(version))
                from tensorboardX import SummaryWriter
            tb_logger = SummaryWriter(os.path.join(self.opt['path']['OUTPUT_ROOT'], 'log'))
        else:
            tb_logger = None
        return logger, tb_logger

    def setSeed(self):
        seed = self.opt['train']['manual_seed']
        if self.rank <= 0:
            self.logger.info('Random seed: {}'.format(seed))
        util.set_random_seed(seed)
        torch.backends.cudnn.benchmark = True
        if seed == 0:
            torch.backends.cudnn.deterministic = True

    def prepareDataset(self):
        dataInfo = self.opt['datasets']['dataInfo']
        valInfo = self.opt['datasets']['valInfo']
        valInfo['sigma'] = dataInfo['edge']['sigma']
        valInfo['low_threshold'] = dataInfo['edge']['low_threshold']
        valInfo['high_threshold'] = dataInfo['edge']['high_threshold']
        valInfo['norm'] = self.opt['norm']
        if self.rank <= 0:
            self.logger.debug('Val info is: {}'.format(valInfo))
        train_set, train_size, total_iterations, total_epochs = 0, 0, 0, 0
        train_loader, train_sampler = None, None
        for phase, dataset in self.opt['datasets'].items():
            dataset['norm'] = self.opt['norm']
            dataset['dataMode'] = self.opt['dataMode']
            dataset['edge_loss'] = self.opt['edge_loss']
            dataset['ternary'] = self.opt['ternary']
            dataset['num_flows'] = self.opt['num_flows']
            dataset['sample'] = self.opt['sample']
            dataset['use_edges'] = self.opt['use_edges']
            dataset['flow_interval'] = self.opt['flow_interval']
            if phase.lower() == 'train':
                train_set = create_dataset(dataset, dataInfo, phase, self.opt['datasetName_train'])
                train_size = math.ceil(
                    len(train_set) / (dataset['batch_size'] * self.opt['world_size']))  # 计算一个epoch有多少个iterations
                total_iterations = self.opt['train']['MAX_ITERS']
                total_epochs = int(math.ceil(total_iterations / train_size))
                if self.opt['distributed']:
                    train_sampler = DistributedSampler(
                        train_set,
                        num_replicas=self.opt['world_size'],
                        rank=self.opt['global_rank'])
                else:
                    train_sampler = None
                train_loader = create_dataloader(phase, train_set, dataset, self.opt, train_sampler)
                if self.rank <= 0:
                    self.logger.info('Number of training batches: {}, iters: {}'.format(len(train_set),
                                                                                        total_iterations))
                    self.logger.info('Total epoch needed: {} for iters {}'.format(total_epochs, total_iterations))
        assert train_set != 0 and train_size != 0, "Train size cannot be zero"
        assert train_loader is not None, "Cannot find train set, val set can be None"
        return dataInfo, valInfo, train_set, train_size, total_iterations, total_epochs, train_loader, train_sampler

    @abstractmethod
    def init_model(self):
        pass

    @abstractmethod
    def resume_training(self):
        pass

    def train(self):
        for epoch in range(self.startEpoch, self.totalEpochs + 1):
            if self.opt['distributed']:
                self.trainSampler.set_epoch(epoch)
            self._trainEpoch(epoch)
            if self.currentStep > self.totalIterations:
                break
            if self.opt['use_valid'] and (epoch + 1) % self.opt['train']['val_freq'] == 0:
                self._validate(epoch)
            self.scheduler.step(epoch)

    @abstractmethod
    def _trainEpoch(self, epoch):
        pass

    @abstractmethod
    def _printLog(self, logs, epoch, loss):
        pass

    @abstractmethod
    def save_checkpoint(self, epoch, metric, number):
        pass

    @abstractmethod
    def _validate(self, epoch):
        pass