Spaces:
Sleeping
Sleeping
File size: 15,651 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import os
import sys
import time
import math
import torch.nn.functional as F
from datetime import datetime
import random
import logging
from collections import OrderedDict
import numpy as np
import cv2
import torch
from torchvision.utils import make_grid
from shutil import get_terminal_size
import torchvision.utils as vutils
from shutil import copyfile
import torchvision.transforms as transforms
import yaml
try:
from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
from yaml import Loader, Dumper
def OrderedYaml():
'''yaml orderedDict support'''
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
def dict_representer(dumper, data):
return dumper.represent_dict(data.items())
def dict_constructor(loader, node):
return OrderedDict(loader.construct_pairs(node))
Dumper.add_representer(OrderedDict, dict_representer)
Loader.add_constructor(_mapping_tag, dict_constructor)
return Loader, Dumper
####################
# miscellaneous
####################
def get_timestamp():
return datetime.now().strftime('%y%m%d-%H%M%S')
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def mkdirs(paths):
if isinstance(paths, str):
print('path is : ', paths)
mkdir(paths)
else:
for path in paths:
print('path is : {}'.format(path))
mkdir(path)
def mkdir_and_rename(path):
new_name = None
if os.path.exists(path):
new_name = path + '_archived_' + get_timestamp()
logger = logging.getLogger('base')
logger.info('Path already exists. Rename it to [{:s}]'.format(new_name))
os.rename(path, new_name)
os.makedirs(path)
return new_name
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False):
'''set up logger'''
lg = logging.getLogger(logger_name)
formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s',
datefmt='%y-%m-%d %H:%M:%S')
lg.setLevel(level)
if tofile:
log_file = os.path.join(root, phase + '_{}.log'.format(get_timestamp()))
fh = logging.FileHandler(log_file, mode='w')
fh.setFormatter(formatter)
lg.addHandler(fh)
if screen:
sh = logging.StreamHandler()
sh.setFormatter(formatter)
lg.addHandler(sh)
####################
# image convert
####################
def crop_border(img_list, crop_border):
"""Crop borders of images
Args:
img_list (list [Numpy]): HWC
crop_border (int): crop border for each end of height and weight
Returns:
(list [Numpy]): cropped image list
"""
if crop_border == 0:
return img_list
else:
return [v[crop_border:-crop_border, crop_border:-crop_border] for v in img_list]
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
'''
Converts a torch Tensor into an image Numpy array
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
'''
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
return img_np.astype(out_type)
def save_img(img, img_path, mode='RGB'):
cv2.imwrite(img_path, img)
def DUF_downsample(x, scale=4):
"""Downsamping with Gaussian kernel used in the DUF official code
Args:
x (Tensor, [B, T, C, H, W]): frames to be downsampled.
scale (int): downsampling factor: 2 | 3 | 4.
"""
assert scale in [2, 3, 4], 'Scale [{}] is not supported'.format(scale)
def gkern(kernlen=13, nsig=1.6):
import scipy.ndimage.filters as fi
inp = np.zeros((kernlen, kernlen))
# set element at the middle to one, a dirac delta
inp[kernlen // 2, kernlen // 2] = 1
# gaussian-smooth the dirac, resulting in a gaussian filter mask
return fi.gaussian_filter(inp, nsig)
B, T, C, H, W = x.size()
x = x.view(-1, 1, H, W)
pad_w, pad_h = 6 + scale * 2, 6 + scale * 2 # 6 is the pad of the gaussian filter
r_h, r_w = 0, 0
if scale == 3:
r_h = 3 - (H % 3)
r_w = 3 - (W % 3)
x = F.pad(x, [pad_w, pad_w + r_w, pad_h, pad_h + r_h], 'reflect')
gaussian_filter = torch.from_numpy(gkern(13, 0.4 * scale)).type_as(x).unsqueeze(0).unsqueeze(0)
x = F.conv2d(x, gaussian_filter, stride=scale)
x = x[:, :, 2:-2, 2:-2]
x = x.view(B, T, C, x.size(2), x.size(3))
return x
def single_forward(model, inp):
"""PyTorch model forward (single test), it is just a simple warpper
Args:
model (PyTorch model)
inp (Tensor): inputs defined by the model
Returns:
output (Tensor): outputs of the model. float, in CPU
"""
with torch.no_grad():
model_output = model(inp)
if isinstance(model_output, list) or isinstance(model_output, tuple):
output = model_output[0]
else:
output = model_output
output = output.data.float().cpu()
return output
def flipx4_forward(model, inp):
"""Flip testing with X4 self ensemble, i.e., normal, flip H, flip W, flip H and W
Args:
model (PyTorch model)
inp (Tensor): inputs defined by the model
Returns:
output (Tensor): outputs of the model. float, in CPU
"""
# normal
output_f = single_forward(model, inp)
# flip W
output = single_forward(model, torch.flip(inp, (-1,)))
output_f = output_f + torch.flip(output, (-1,))
# flip H
output = single_forward(model, torch.flip(inp, (-2,)))
output_f = output_f + torch.flip(output, (-2,))
# flip both H and W
output = single_forward(model, torch.flip(inp, (-2, -1)))
output_f = output_f + torch.flip(output, (-2, -1))
return output_f / 4
####################
# metric
####################
class ProgressBar(object):
'''A progress bar which can print the progress
modified from https://github.com/hellock/cvbase/blob/master/cvbase/progress.py
'''
def __init__(self, task_num=0, bar_width=50, start=True):
self.task_num = task_num
max_bar_width = self._get_max_bar_width()
self.bar_width = (bar_width if bar_width <= max_bar_width else max_bar_width)
self.completed = 0
if start:
self.start()
def _get_max_bar_width(self):
terminal_width, _ = get_terminal_size()
max_bar_width = min(int(terminal_width * 0.6), terminal_width - 50)
if max_bar_width < 10:
print('terminal width is too small ({}), please consider widen the terminal for better '
'progressbar visualization'.format(terminal_width))
max_bar_width = 10
return max_bar_width
def start(self):
if self.task_num > 0:
sys.stdout.write('[{}] 0/{}, elapsed: 0s, ETA:\n{}\n'.format(
' ' * self.bar_width, self.task_num, 'Start...'))
else:
sys.stdout.write('completed: 0, elapsed: 0s')
sys.stdout.flush()
self.start_time = time.time()
def update(self, msg='In progress...'):
self.completed += 1
elapsed = time.time() - self.start_time
fps = self.completed / elapsed
if self.task_num > 0:
percentage = self.completed / float(self.task_num)
eta = int(elapsed * (1 - percentage) / percentage + 0.5)
mark_width = int(self.bar_width * percentage)
bar_chars = '>' * mark_width + '-' * (self.bar_width - mark_width)
sys.stdout.write('\033[2F') # cursor up 2 lines
sys.stdout.write('\033[J') # clean the output (remove extra chars since last display)
sys.stdout.write('[{}] {}/{}, {:.1f} task/s, elapsed: {}s, ETA: {:5}s\n{}\n'.format(
bar_chars, self.completed, self.task_num, fps, int(elapsed + 0.5), eta, msg))
else:
sys.stdout.write('completed: {}, elapsed: {}s, {:.1f} tasks/s'.format(
self.completed, int(elapsed + 0.5), fps))
sys.stdout.flush()
### communication
def find_free_port():
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
return port
# for debug
def visualize_image(result, outputDir, epoch, mode, video_name, minData=0):
### Only visualize one frame
targetDir = os.path.join(outputDir, str(epoch), video_name)
if not os.path.exists(targetDir):
os.makedirs(targetDir)
if minData == -1:
result = (result + 1) / 2
vutils.save_image(result, os.path.join(targetDir, '{}.png'.format(mode)))
elif minData == 0:
vutils.save_image(result, os.path.join(targetDir, '{}.png'.format(mode)))
else:
raise ValueError('minValue {} is not supported'.format(minData))
def get_learning_rate(optimizer):
lr = []
for param_group in optimizer.param_groups:
lr += [param_group['lr']]
return lr
def adjust_learning_rate(optimizer, target_lr):
for param_group in optimizer.param_groups:
param_group['lr'] = target_lr
def save_checkpoint(epoch, model, discriminator, current_step, schedulers, dist_scheduler, optimizers, dist_optimizer, save_path, is_best, monitor, monitor_value,
config):
# for entriely resuming state, you need to save the state dict of model, optimizer and learning scheduler
if isinstance(model, torch.nn.DataParallel) or isinstance(model, torch.nn.parallel.DistributedDataParallel):
model_state = model.module.state_dict()
discriminator_state = discriminator.module.state_dict()
else:
model_state = model.state_dict()
discriminator_state = discriminator.state_dict()
state = {
'epoch': epoch,
'iteration': current_step,
'model_state_dict': model_state,
'discriminator_state_dict': discriminator_state,
'optimizer_state_dict': optimizers.state_dict(),
'dist_optim_state_dict': dist_optimizer.state_dict(),
'scheduler_state_dict': schedulers.state_dict(),
'dist_scheduler_state_dict': dist_scheduler.state_dict(),
'is_best': is_best,
'config': config,
}
best_str = '-best-so-far' if is_best else ''
monitor_str = '-{}:{}'.format(monitor, monitor_value) if monitor_value else ''
if not os.path.exists(os.path.join(save_path, 'best')):
os.makedirs(os.path.join(save_path, 'best'))
file_name = os.path.join(save_path, 'checkpoint-epoch:{}{}{}.pth.tar'.format(epoch, monitor_str, best_str))
torch.save(state, file_name)
if is_best:
copyfile(src=file_name, dst=os.path.join(save_path, 'best',
'checkpoint-epoch:{}{}{}.pth.tar'.format(epoch, monitor_str,
best_str)))
def save_dist_checkpoint(epoch, model, dist, current_step, schedulers, schedulersD, optimizers, optimizersD, save_path,
is_best, monitor, monitor_value,
config):
# for entriely resuming state, you need to save the state dict of model, optimizer and learning scheduler
if isinstance(model, torch.nn.DataParallel) or isinstance(model, torch.nn.parallel.DistributedDataParallel):
model_state = model.module.state_dict()
dist_state = dist.module.state_dict()
else:
model_state = model.state_dict()
dist_state = dist.state_dict()
state = {
'epoch': epoch,
'iteration': current_step,
'model_state_dict': model_state,
'dist_state_dict': dist_state,
'optimizer_state_dict': optimizers.state_dict(),
'optimizerD_state_dict': optimizersD.state_dict(),
'scheduler_state_dict': schedulers.state_dict(),
'schedulerD_state_dict': schedulersD.state_dict(),
'is_best': is_best,
'config': config
}
best_str = '-best-so-far' if is_best else ''
monitor_str = '-{}:{}'.format(monitor, monitor_value) if monitor_value else ''
if not os.path.exists(os.path.join(save_path, 'best')):
os.makedirs(os.path.join(save_path, 'best'))
file_name = os.path.join(save_path, 'checkpoint-epoch:{}{}{}.pth.tar'.format(epoch, monitor_str, best_str))
torch.save(state, file_name)
if is_best:
copyfile(src=file_name, dst=os.path.join(save_path, 'best',
'checkpoint-epoch:{}{}{}.pth.tar'.format(epoch, monitor_str,
best_str)))
def poisson_blend(input, output, mask):
"""
* inputs:
- input (torch.Tensor, required)
Input tensor of Completion Network, whose shape = (N, 3, H, W).
- output (torch.Tensor, required)
Output tensor of Completion Network, whose shape = (N, 3, H, W).
- mask (torch.Tensor, required)
Input mask tensor of Completion Network, whose shape = (N, 1, H, W).
* returns:
Output image tensor of shape (N, 3, H, W) inpainted with poisson image editing method.
from lizuka et al: https://github.com/otenim/GLCIC-PyTorch/blob/caf9bebe667fba0aebbd041918f2d8128f59ec62/utils.py
"""
input = input.clone().cpu()
output = output.clone().cpu()
mask = mask.clone().cpu()
mask = torch.cat((mask, mask, mask), dim=1) # convert to 3-channel format
num_samples = input.shape[0]
ret = []
for i in range(num_samples):
dstimg = transforms.functional.to_pil_image(input[i])
dstimg = np.array(dstimg)[:, :, [2, 1, 0]]
srcimg = transforms.functional.to_pil_image(output[i])
srcimg = np.array(srcimg)[:, :, [2, 1, 0]]
msk = transforms.functional.to_pil_image(mask[i])
msk = np.array(msk)[:, :, [2, 1, 0]]
# compute mask's center
xs, ys = [], []
for j in range(msk.shape[0]):
for k in range(msk.shape[1]):
if msk[j, k, 0] == 255:
ys.append(j)
xs.append(k)
xmin, xmax = min(xs), max(xs)
ymin, ymax = min(ys), max(ys)
center = ((xmax + xmin) // 2, (ymax + ymin) // 2)
dstimg = cv2.inpaint(dstimg, msk[:, :, 0], 1, cv2.INPAINT_TELEA)
out = cv2.seamlessClone(srcimg, dstimg, msk, center, cv2.NORMAL_CLONE)
out = out[:, :, [2, 1, 0]]
out = transforms.functional.to_tensor(out)
out = torch.unsqueeze(out, dim=0)
ret.append(out)
ret = torch.cat(ret, dim=0)
return ret
|