File size: 26,084 Bytes
d4b77ac 2dbb619 d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import cv2
import copy
import numpy as np
import scipy.io as sio
from tool.utils.common_utils import interp, BFconsistCheck, \
FBconsistCheck, consistCheck, get_KeySourceFrame_flowNN_gradient
def get_flowNN_gradient(args,
gradient_x,
gradient_y,
mask_RGB,
mask,
videoFlowF,
videoFlowB,
videoNonLocalFlowF,
videoNonLocalFlowB):
# gradient_x: imgH x (imgW - 1 + 1) x 3 x nFrame
# gradient_y: (imgH - 1 + 1) x imgW x 3 x nFrame
# mask_RGB: imgH x imgW x nFrame
# mask: imgH x imgW x nFrame
# videoFlowF: imgH x imgW x 2 x (nFrame - 1) | [u, v]
# videoFlowB: imgH x imgW x 2 x (nFrame - 1) | [u, v]
# videoNonLocalFlowF: imgH x imgW x 2 x 3 x nFrame
# videoNonLocalFlowB: imgH x imgW x 2 x 3 x nFrame
if args.Nonlocal:
num_candidate = 5
else:
num_candidate = 2
imgH, imgW, nFrame = mask.shape
numPix = np.sum(mask)
# |--------------------| |--------------------|
# | y | | v |
# | x * | | u * |
# | | | |
# |--------------------| |--------------------|
# sub: numPix * 3 | [y, x, t]
# flowNN: numPix * 3 * 2 | [y, x, t], [BN, FN]
# HaveFlowNN: imgH * imgW * nFrame * 2
# numPixInd: imgH * imgW * nFrame
# consistencyMap: imgH * imgW * 5 * nFrame | [BN, FN, NL2, NL3, NL4]
# consistency_uv: imgH * imgW * [BN, FN] * [u, v] * nFrame
# sub: numPix * [y, x, t] | position of mising pixels
sub = np.concatenate((np.where(mask == 1)[0].reshape(-1, 1),
np.where(mask == 1)[1].reshape(-1, 1),
np.where(mask == 1)[2].reshape(-1, 1)), axis=1)
# flowNN: numPix * [y, x, t] * [BN, FN] | flow neighbors
flowNN = np.ones((numPix, 3, 2)) * 99999 # * -1
HaveFlowNN = np.ones((imgH, imgW, nFrame, 2)) * 99999
HaveFlowNN[mask, :] = 0
numPixInd = np.ones((imgH, imgW, nFrame)) * -1
consistencyMap = np.zeros((imgH, imgW, num_candidate, nFrame))
consistency_uv = np.zeros((imgH, imgW, 2, 2, nFrame))
# numPixInd[y, x, t] gives the index of the missing pixel@[y, x, t] in sub,
# i.e. which row. numPixInd[y, x, t] = idx; sub[idx, :] = [y, x, t]
for idx in range(len(sub)):
numPixInd[sub[idx, 0], sub[idx, 1], sub[idx, 2]] = idx
# Initialization
frameIndSetF = range(1, nFrame)
frameIndSetB = range(nFrame - 2, -1, -1)
# 1. Forward Pass (backward flow propagation)
print('Forward Pass......')
NN_idx = 0 # BN:0
for indFrame in frameIndSetF:
# Bool indicator of missing pixels at frame t
holepixPosInd = (sub[:, 2] == indFrame)
# Hole pixel location at frame t, i.e. [y, x, t]
holepixPos = sub[holepixPosInd, :]
# Calculate the backward flow neighbor. Should be located at frame t-1
flowB_neighbor = copy.deepcopy(holepixPos)
flowB_neighbor = flowB_neighbor.astype(np.float32)
flowB_vertical = videoFlowB[:, :, 1, indFrame - 1] # t --> t-1
flowB_horizont = videoFlowB[:, :, 0, indFrame - 1]
flowF_vertical = videoFlowF[:, :, 1, indFrame - 1] # t-1 --> t
flowF_horizont = videoFlowF[:, :, 0, indFrame - 1]
flowB_neighbor[:, 0] += flowB_vertical[holepixPos[:, 0], holepixPos[:, 1]]
flowB_neighbor[:, 1] += flowB_horizont[holepixPos[:, 0], holepixPos[:, 1]]
flowB_neighbor[:, 2] -= 1
# Round the backward flow neighbor location
flow_neighbor_int = np.round(copy.deepcopy(flowB_neighbor)).astype(np.int32)
# Chen: I should combine the following two operations together
# Check the backward/forward consistency
IsConsist, _ = BFconsistCheck(flowB_neighbor,
flowF_vertical,
flowF_horizont,
holepixPos,
args.consistencyThres)
trueConsist = IsConsist[IsConsist == True]
BFdiff, BF_uv = consistCheck(videoFlowF[:, :, :, indFrame - 1],
videoFlowB[:, :, :, indFrame - 1])
# Check out-of-boundary
# Last column and last row does not have valid gradient
ValidPos = np.logical_and(
np.logical_and(flow_neighbor_int[:, 0] >= 0,
flow_neighbor_int[:, 0] < imgH - 1),
np.logical_and(flow_neighbor_int[:, 1] >= 0,
flow_neighbor_int[:, 1] < imgW - 1))
# Only work with pixels that are not out-of-boundary
holepixPos = holepixPos[ValidPos, :]
flowB_neighbor = flowB_neighbor[ValidPos, :]
flow_neighbor_int = flow_neighbor_int[ValidPos, :]
IsConsist = IsConsist[ValidPos]
# For each missing pixel in holepixPos|[y, x, t],
# we check its backward flow neighbor flowB_neighbor|[y', x', t-1].
# Case 1: If mask[round(y'), round(x'), t-1] == 0,
# the backward flow neighbor of [y, x, t] is known.
# [y', x', t-1] is the backward flow neighbor.
# KnownInd: Among all backward flow neighbors, which pixel is known.
KnownInd = mask[flow_neighbor_int[:, 0],
flow_neighbor_int[:, 1],
indFrame - 1] == 0
KnownIsConsist = np.logical_and(KnownInd, IsConsist)
holepixPos_valid = holepixPos[KnownIsConsist]
# We save backward flow neighbor flowB_neighbor in flowNN
flowNN[numPixInd[holepixPos[KnownIsConsist, 0],
holepixPos[KnownIsConsist, 1],
indFrame].astype(np.int32), :, NN_idx] = \
flowB_neighbor[KnownIsConsist, :]
# flowNN[np.where(holepixPosInd == 1)[0][ValidPos][KnownIsConsist], :, 0] = \
# flowB_neighbor[KnownIsConsist, :]
# We mark [y, x, t] in HaveFlowNN as 1
HaveFlowNN[holepixPos[KnownIsConsist, 0],
holepixPos[KnownIsConsist, 1],
indFrame,
NN_idx] = 1
# HaveFlowNN[:, :, :, 0]
# 0: Backward flow neighbor can not be reached
# 1: Backward flow neighbor can be reached
# -1: Pixels that do not need to be completed
consistency_uv[holepixPos[KnownIsConsist, 0], holepixPos[KnownIsConsist, 1], NN_idx, 0, indFrame] = np.abs(BF_uv[holepixPos[KnownIsConsist, 0], holepixPos[KnownIsConsist, 1], 0])
consistency_uv[holepixPos[KnownIsConsist, 0], holepixPos[KnownIsConsist, 1], NN_idx, 1, indFrame] = np.abs(BF_uv[holepixPos[KnownIsConsist, 0], holepixPos[KnownIsConsist, 1], 1])
# Case 2: If mask[round(y'), round(x'), t-1] == 1,
# the pixel@[round(y'), round(x'), t-1] is also occluded.
# We further check if we already assign a backward flow neighbor for the backward flow neighbor
# If HaveFlowNN[round(y'), round(x'), t-1] == 0,
# this is isolated pixel. Do nothing.
# If HaveFlowNN[round(y'), round(x'), t-1] == 1,
# we can borrow the value and refine it.
UnknownInd = np.invert(KnownInd)
# If we already assign a backward flow neighbor@[round(y'), round(x'), t-1]
HaveNNInd = HaveFlowNN[flow_neighbor_int[:, 0],
flow_neighbor_int[:, 1],
indFrame - 1,
NN_idx] == 1
# Unknown & IsConsist & HaveNNInd
Valid_ = np.logical_and.reduce((UnknownInd, HaveNNInd, IsConsist))
refineVec = np.concatenate((
(flowB_neighbor[:, 0] - flow_neighbor_int[:, 0]).reshape(-1, 1),
(flowB_neighbor[:, 1] - flow_neighbor_int[:, 1]).reshape(-1, 1),
np.zeros((flowB_neighbor[:, 0].shape[0])).reshape(-1, 1)), 1)
# Check if the transitive backward flow neighbor of [y, x, t] is known.
# Sometimes after refinement, it is no longer known.
flowNN_tmp = copy.deepcopy(flowNN[numPixInd[flow_neighbor_int[:, 0],
flow_neighbor_int[:, 1],
indFrame - 1].astype(np.int32), :, NN_idx] + refineVec[:, :])
flowNN_tmp = np.round(flowNN_tmp).astype(np.int32)
# Check out-of-boundary. flowNN_tmp may be out-of-boundary
ValidPos_ = np.logical_and(
np.logical_and(flowNN_tmp[:, 0] >= 0,
flowNN_tmp[:, 0] < imgH - 1),
np.logical_and(flowNN_tmp[:, 1] >= 0,
flowNN_tmp[:, 1] < imgW - 1))
# Change the out-of-boundary value to 0, in order to run mask[y,x,t]
# in the next line. It won't affect anything as ValidPos_ is saved already
flowNN_tmp[np.invert(ValidPos_), :] = 0
ValidNN = mask[flowNN_tmp[:, 0],
flowNN_tmp[:, 1],
flowNN_tmp[:, 2]] == 0
# Valid = np.logical_and.reduce((Valid_, ValidNN, ValidPos_))
Valid = np.logical_and.reduce((Valid_, ValidPos_))
# We save the transitive backward flow neighbor flowB_neighbor in flowNN
flowNN[numPixInd[holepixPos[Valid, 0],
holepixPos[Valid, 1],
indFrame].astype(np.int32), :, NN_idx] = \
flowNN[numPixInd[flow_neighbor_int[Valid, 0],
flow_neighbor_int[Valid, 1],
indFrame - 1].astype(np.int32), :, NN_idx] + refineVec[Valid, :]
# We mark [y, x, t] in HaveFlowNN as 1
HaveFlowNN[holepixPos[Valid, 0],
holepixPos[Valid, 1],
indFrame,
NN_idx] = 1
consistency_uv[holepixPos[Valid, 0], holepixPos[Valid, 1], NN_idx, 0, indFrame] = np.maximum(np.abs(BF_uv[holepixPos[Valid, 0], holepixPos[Valid, 1], 0]), np.abs(consistency_uv[flow_neighbor_int[Valid, 0], flow_neighbor_int[Valid, 1], NN_idx, 0, indFrame - 1]))
consistency_uv[holepixPos[Valid, 0], holepixPos[Valid, 1], NN_idx, 1, indFrame] = np.maximum(np.abs(BF_uv[holepixPos[Valid, 0], holepixPos[Valid, 1], 1]), np.abs(consistency_uv[flow_neighbor_int[Valid, 0], flow_neighbor_int[Valid, 1], NN_idx, 1, indFrame - 1]))
consistencyMap[:, :, NN_idx, indFrame] = (consistency_uv[:, :, NN_idx, 0, indFrame] ** 2 + consistency_uv[:, :, NN_idx, 1, indFrame] ** 2) ** 0.5
print("Frame {0:3d}: {1:8d} + {2:8d} = {3:8d}"
.format(indFrame,
np.sum(HaveFlowNN[:, :, indFrame, NN_idx] == 1),
np.sum(HaveFlowNN[:, :, indFrame, NN_idx] == 0),
np.sum(HaveFlowNN[:, :, indFrame, NN_idx] != 99999)))
# 2. Backward Pass (forward flow propagation)
print('Backward Pass......')
NN_idx = 1 # FN:1
for indFrame in frameIndSetB:
# Bool indicator of missing pixels at frame t
holepixPosInd = (sub[:, 2] == indFrame)
# Hole pixel location at frame t, i.e. [y, x, t]
holepixPos = sub[holepixPosInd, :]
# Calculate the forward flow neighbor. Should be located at frame t+1
flowF_neighbor = copy.deepcopy(holepixPos)
flowF_neighbor = flowF_neighbor.astype(np.float32)
flowF_vertical = videoFlowF[:, :, 1, indFrame] # t --> t+1
flowF_horizont = videoFlowF[:, :, 0, indFrame]
flowB_vertical = videoFlowB[:, :, 1, indFrame] # t+1 --> t
flowB_horizont = videoFlowB[:, :, 0, indFrame]
flowF_neighbor[:, 0] += flowF_vertical[holepixPos[:, 0], holepixPos[:, 1]]
flowF_neighbor[:, 1] += flowF_horizont[holepixPos[:, 0], holepixPos[:, 1]]
flowF_neighbor[:, 2] += 1
# Round the forward flow neighbor location
flow_neighbor_int = np.round(copy.deepcopy(flowF_neighbor)).astype(np.int32)
# Check the forawrd/backward consistency
IsConsist, _ = FBconsistCheck(flowF_neighbor,
flowB_vertical,
flowB_horizont,
holepixPos,
args.consistencyThres)
FBdiff, FB_uv = consistCheck(videoFlowB[:, :, :, indFrame],
videoFlowF[:, :, :, indFrame])
# Check out-of-boundary
# Last column and last row does not have valid gradient
ValidPos = np.logical_and(
np.logical_and(flow_neighbor_int[:, 0] >= 0,
flow_neighbor_int[:, 0] < imgH - 1),
np.logical_and(flow_neighbor_int[:, 1] >= 0,
flow_neighbor_int[:, 1] < imgW - 1))
# Only work with pixels that are not out-of-boundary
holepixPos = holepixPos[ValidPos, :]
flowF_neighbor = flowF_neighbor[ValidPos, :]
flow_neighbor_int = flow_neighbor_int[ValidPos, :]
IsConsist = IsConsist[ValidPos]
# Case 1:
KnownInd = mask[flow_neighbor_int[:, 0],
flow_neighbor_int[:, 1],
indFrame + 1] == 0
KnownIsConsist = np.logical_and(KnownInd, IsConsist)
flowNN[numPixInd[holepixPos[KnownIsConsist, 0],
holepixPos[KnownIsConsist, 1],
indFrame].astype(np.int32), :, NN_idx] = \
flowF_neighbor[KnownIsConsist, :]
HaveFlowNN[holepixPos[KnownIsConsist, 0],
holepixPos[KnownIsConsist, 1],
indFrame,
NN_idx] = 1
consistency_uv[holepixPos[KnownIsConsist, 0], holepixPos[KnownIsConsist, 1], NN_idx, 0, indFrame] = np.abs(FB_uv[holepixPos[KnownIsConsist, 0], holepixPos[KnownIsConsist, 1], 0])
consistency_uv[holepixPos[KnownIsConsist, 0], holepixPos[KnownIsConsist, 1], NN_idx, 1, indFrame] = np.abs(FB_uv[holepixPos[KnownIsConsist, 0], holepixPos[KnownIsConsist, 1], 1])
# Case 2:
UnknownInd = np.invert(KnownInd)
HaveNNInd = HaveFlowNN[flow_neighbor_int[:, 0],
flow_neighbor_int[:, 1],
indFrame + 1,
NN_idx] == 1
# Unknown & IsConsist & HaveNNInd
Valid_ = np.logical_and.reduce((UnknownInd, HaveNNInd, IsConsist))
refineVec = np.concatenate((
(flowF_neighbor[:, 0] - flow_neighbor_int[:, 0]).reshape(-1, 1),
(flowF_neighbor[:, 1] - flow_neighbor_int[:, 1]).reshape(-1, 1),
np.zeros((flowF_neighbor[:, 0].shape[0])).reshape(-1, 1)), 1)
# Check if the transitive backward flow neighbor of [y, x, t] is known.
# Sometimes after refinement, it is no longer known.
flowNN_tmp = copy.deepcopy(flowNN[numPixInd[flow_neighbor_int[:, 0],
flow_neighbor_int[:, 1],
indFrame + 1].astype(np.int32), :, NN_idx] + refineVec[:, :])
flowNN_tmp = np.round(flowNN_tmp).astype(np.int32)
# Check out-of-boundary. flowNN_tmp may be out-of-boundary
ValidPos_ = np.logical_and(
np.logical_and(flowNN_tmp[:, 0] >= 0,
flowNN_tmp[:, 0] < imgH - 1),
np.logical_and(flowNN_tmp[:, 1] >= 0,
flowNN_tmp[:, 1] < imgW - 1))
# Change the out-of-boundary value to 0, in order to run mask[y,x,t]
# in the next line. It won't affect anything as ValidPos_ is saved already
flowNN_tmp[np.invert(ValidPos_), :] = 0
ValidNN = mask[flowNN_tmp[:, 0],
flowNN_tmp[:, 1],
flowNN_tmp[:, 2]] == 0
# Valid = np.logical_and.reduce((Valid_, ValidNN, ValidPos_))
Valid = np.logical_and.reduce((Valid_, ValidPos_))
# We save the transitive backward flow neighbor flowB_neighbor in flowNN
flowNN[numPixInd[holepixPos[Valid, 0],
holepixPos[Valid, 1],
indFrame].astype(np.int32), :, NN_idx] = \
flowNN[numPixInd[flow_neighbor_int[Valid, 0],
flow_neighbor_int[Valid, 1],
indFrame + 1].astype(np.int32), :, NN_idx] + refineVec[Valid, :]
# We mark [y, x, t] in HaveFlowNN as 1
HaveFlowNN[holepixPos[Valid, 0],
holepixPos[Valid, 1],
indFrame,
NN_idx] = 1
consistency_uv[holepixPos[Valid, 0], holepixPos[Valid, 1], NN_idx, 0, indFrame] = np.maximum(np.abs(FB_uv[holepixPos[Valid, 0], holepixPos[Valid, 1], 0]), np.abs(consistency_uv[flow_neighbor_int[Valid, 0], flow_neighbor_int[Valid, 1], NN_idx, 0, indFrame + 1]))
consistency_uv[holepixPos[Valid, 0], holepixPos[Valid, 1], NN_idx, 1, indFrame] = np.maximum(np.abs(FB_uv[holepixPos[Valid, 0], holepixPos[Valid, 1], 1]), np.abs(consistency_uv[flow_neighbor_int[Valid, 0], flow_neighbor_int[Valid, 1], NN_idx, 1, indFrame + 1]))
consistencyMap[:, :, NN_idx, indFrame] = (consistency_uv[:, :, NN_idx, 0, indFrame] ** 2 + consistency_uv[:, :, NN_idx, 1, indFrame] ** 2) ** 0.5
print("Frame {0:3d}: {1:8d} + {2:8d} = {3:8d}"
.format(indFrame,
np.sum(HaveFlowNN[:, :, indFrame, NN_idx] == 1),
np.sum(HaveFlowNN[:, :, indFrame, NN_idx] == 0),
np.sum(HaveFlowNN[:, :, indFrame, NN_idx] != 99999)))
# Interpolation
gradient_x_BN = copy.deepcopy(gradient_x)
gradient_y_BN = copy.deepcopy(gradient_y)
gradient_x_FN = copy.deepcopy(gradient_x)
gradient_y_FN = copy.deepcopy(gradient_y)
for indFrame in range(nFrame):
# Index of missing pixel whose backward flow neighbor is from frame indFrame
SourceFmInd = np.where(flowNN[:, 2, 0] == indFrame)
print("{0:8d} pixels are from source Frame {1:3d}"
.format(len(SourceFmInd[0]), indFrame))
# The location of the missing pixel whose backward flow neighbor is
# from frame indFrame flowNN[SourceFmInd, 0, 0], flowNN[SourceFmInd, 1, 0]
if len(SourceFmInd[0]) != 0:
# |--------------------|
# | y |
# | x * |
# | |
# |--------------------|
# sub: numPix x 3 [y, x, t]
# img: [y, x]
# interp(img, x, y)
gradient_x_BN[sub[SourceFmInd[0], :][:, 0],
sub[SourceFmInd[0], :][:, 1],
:, sub[SourceFmInd[0], :][:, 2]] = \
interp(gradient_x_BN[:, :, :, indFrame],
flowNN[SourceFmInd, 1, 0].reshape(-1),
flowNN[SourceFmInd, 0, 0].reshape(-1))
gradient_y_BN[sub[SourceFmInd[0], :][:, 0],
sub[SourceFmInd[0], :][:, 1],
:, sub[SourceFmInd[0], :][:, 2]] = \
interp(gradient_y_BN[:, :, :, indFrame],
flowNN[SourceFmInd, 1, 0].reshape(-1),
flowNN[SourceFmInd, 0, 0].reshape(-1))
assert(((sub[SourceFmInd[0], :][:, 2] - indFrame) <= 0).sum() == 0)
for indFrame in range(nFrame - 1, -1, -1):
# Index of missing pixel whose forward flow neighbor is from frame indFrame
SourceFmInd = np.where(flowNN[:, 2, 1] == indFrame)
print("{0:8d} pixels are from source Frame {1:3d}"
.format(len(SourceFmInd[0]), indFrame))
if len(SourceFmInd[0]) != 0:
gradient_x_FN[sub[SourceFmInd[0], :][:, 0],
sub[SourceFmInd[0], :][:, 1],
:, sub[SourceFmInd[0], :][:, 2]] = \
interp(gradient_x_FN[:, :, :, indFrame],
flowNN[SourceFmInd, 1, 1].reshape(-1),
flowNN[SourceFmInd, 0, 1].reshape(-1))
gradient_y_FN[sub[SourceFmInd[0], :][:, 0],
sub[SourceFmInd[0], :][:, 1],
:, sub[SourceFmInd[0], :][:, 2]] = \
interp(gradient_y_FN[:, :, :, indFrame],
flowNN[SourceFmInd, 1, 1].reshape(-1),
flowNN[SourceFmInd, 0, 1].reshape(-1))
assert(((indFrame - sub[SourceFmInd[0], :][:, 2]) <= 0).sum() == 0)
# New mask
mask_tofill = np.zeros((imgH, imgW, nFrame)).astype(np.bool)
for indFrame in range(nFrame):
if args.Nonlocal:
consistencyMap[:, :, 2, indFrame], _ = consistCheck(
videoNonLocalFlowB[:, :, :, 0, indFrame],
videoNonLocalFlowF[:, :, :, 0, indFrame])
consistencyMap[:, :, 3, indFrame], _ = consistCheck(
videoNonLocalFlowB[:, :, :, 1, indFrame],
videoNonLocalFlowF[:, :, :, 1, indFrame])
consistencyMap[:, :, 4, indFrame], _ = consistCheck(
videoNonLocalFlowB[:, :, :, 2, indFrame],
videoNonLocalFlowF[:, :, :, 2, indFrame])
HaveNN = np.zeros((imgH, imgW, num_candidate))
if args.Nonlocal:
HaveKeySourceFrameFlowNN, gradient_x_KeySourceFrameFlowNN, gradient_y_KeySourceFrameFlowNN = \
get_KeySourceFrame_flowNN_gradient(sub,
indFrame,
mask,
videoNonLocalFlowB,
videoNonLocalFlowF,
gradient_x,
gradient_y,
args.consistencyThres)
HaveNN[:, :, 2] = HaveKeySourceFrameFlowNN[:, :, 0] == 1
HaveNN[:, :, 3] = HaveKeySourceFrameFlowNN[:, :, 1] == 1
HaveNN[:, :, 4] = HaveKeySourceFrameFlowNN[:, :, 2] == 1
HaveNN[:, :, 0] = HaveFlowNN[:, :, indFrame, 0] == 1
HaveNN[:, :, 1] = HaveFlowNN[:, :, indFrame, 1] == 1
NotHaveNN = np.logical_and(np.invert(HaveNN.astype(np.bool)),
np.repeat(np.expand_dims((mask[:, :, indFrame]), 2), num_candidate, axis=2))
if args.Nonlocal:
HaveNN_sum = np.logical_or.reduce((HaveNN[:, :, 0],
HaveNN[:, :, 1],
HaveNN[:, :, 2],
HaveNN[:, :, 3],
HaveNN[:, :, 4]))
else:
HaveNN_sum = np.logical_or.reduce((HaveNN[:, :, 0],
HaveNN[:, :, 1]))
gradient_x_Candidate = np.zeros((imgH, imgW, 3, num_candidate))
gradient_y_Candidate = np.zeros((imgH, imgW, 3, num_candidate))
gradient_x_Candidate[:, :, :, 0] = gradient_x_BN[:, :, :, indFrame]
gradient_y_Candidate[:, :, :, 0] = gradient_y_BN[:, :, :, indFrame]
gradient_x_Candidate[:, :, :, 1] = gradient_x_FN[:, :, :, indFrame]
gradient_y_Candidate[:, :, :, 1] = gradient_y_FN[:, :, :, indFrame]
if args.Nonlocal:
gradient_x_Candidate[:, :, :, 2] = gradient_x_KeySourceFrameFlowNN[:, :, :, 0]
gradient_y_Candidate[:, :, :, 2] = gradient_y_KeySourceFrameFlowNN[:, :, :, 0]
gradient_x_Candidate[:, :, :, 3] = gradient_x_KeySourceFrameFlowNN[:, :, :, 1]
gradient_y_Candidate[:, :, :, 3] = gradient_y_KeySourceFrameFlowNN[:, :, :, 1]
gradient_x_Candidate[:, :, :, 4] = gradient_x_KeySourceFrameFlowNN[:, :, :, 2]
gradient_y_Candidate[:, :, :, 4] = gradient_y_KeySourceFrameFlowNN[:, :, :, 2]
consistencyMap[:, :, :, indFrame] = np.exp( - consistencyMap[:, :, :, indFrame] / args.alpha)
consistencyMap[NotHaveNN[:, :, 0], 0, indFrame] = 0
consistencyMap[NotHaveNN[:, :, 1], 1, indFrame] = 0
if args.Nonlocal:
consistencyMap[NotHaveNN[:, :, 2], 2, indFrame] = 0
consistencyMap[NotHaveNN[:, :, 3], 3, indFrame] = 0
consistencyMap[NotHaveNN[:, :, 4], 4, indFrame] = 0
weights = (consistencyMap[HaveNN_sum, :, indFrame] * HaveNN[HaveNN_sum, :]) / ((consistencyMap[HaveNN_sum, :, indFrame] * HaveNN[HaveNN_sum, :]).sum(axis=1, keepdims=True))
# Fix the numerical issue. 0 / 0
fix = np.where((consistencyMap[HaveNN_sum, :, indFrame] * HaveNN[HaveNN_sum, :]).sum(axis=1, keepdims=True) == 0)[0]
weights[fix, :] = HaveNN[HaveNN_sum, :][fix, :] / HaveNN[HaveNN_sum, :][fix, :].sum(axis=1, keepdims=True)
# Fuse RGB channel independently
gradient_x[HaveNN_sum, 0, indFrame] = \
np.sum(np.multiply(gradient_x_Candidate[HaveNN_sum, 0, :], weights), axis=1)
gradient_x[HaveNN_sum, 1, indFrame] = \
np.sum(np.multiply(gradient_x_Candidate[HaveNN_sum, 1, :], weights), axis=1)
gradient_x[HaveNN_sum, 2, indFrame] = \
np.sum(np.multiply(gradient_x_Candidate[HaveNN_sum, 2, :], weights), axis=1)
gradient_y[HaveNN_sum, 0, indFrame] = \
np.sum(np.multiply(gradient_y_Candidate[HaveNN_sum, 0, :], weights), axis=1)
gradient_y[HaveNN_sum, 1, indFrame] = \
np.sum(np.multiply(gradient_y_Candidate[HaveNN_sum, 1, :], weights), axis=1)
gradient_y[HaveNN_sum, 2, indFrame] = \
np.sum(np.multiply(gradient_y_Candidate[HaveNN_sum, 2, :], weights), axis=1)
mask_tofill[np.logical_and(np.invert(HaveNN_sum), mask[:, :, indFrame]), indFrame] = True
return gradient_x, gradient_y, mask_tofill
|