File size: 23,150 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
import torch.nn as nn
import cv2
import copy
import numpy as np
import sys
import os
import time
from PIL import Image
import scipy.ndimage
def combine(img1, img2, slope=0.55, band_width=0.015, offset=0):
imgH, imgW, _ = img1.shape
band_width = int(band_width * imgH)
if img1.shape != img2.shape:
# img1 = cv2.resize(img1, (imgW, imgH))
raise NameError('Shape does not match')
center_point = (int(imgH / 2), int(imgW / 2 + offset))
b = (center_point[1] - 1) - slope * (center_point[0] - 1)
comp_img = np.zeros(img2.shape, dtype=np.float32)
for x in range(imgH):
for y in range(imgW):
if y < (slope * x + b):
comp_img[x, y, :] = img1[x, y, :]
elif y > (slope * x + b):
comp_img[x, y, :] = img2[x, y, :]
start_point = (int(b - 0.5 * band_width), 0)
end_point = (int(slope * (imgW - 1) + b - 0.5 * band_width), imgW - 1)
color = (1, 1, 1)
comp_img = cv2.line(comp_img, start_point, end_point, color, band_width, lineType=cv2.LINE_AA)
return comp_img
def save_video(in_dir, out_dir, optimize=False):
_, ext = os.path.splitext(sorted(os.listdir(in_dir))[0])
dir = '"' + os.path.join(in_dir, '*' + ext) + '"'
if optimize:
os.system('ffmpeg -y -pattern_type glob -f image2 -i {} -pix_fmt yuv420p -preset veryslow -crf 27 {}'.format(dir, out_dir))
else:
os.system('ffmpeg -y -pattern_type glob -f image2 -i {} -pix_fmt yuv420p {}'.format(dir, out_dir))
def create_dir(dir):
if not os.path.exists(dir):
os.makedirs(dir)
def bboxes_mask(imgH, imgW, type='ori'):
mask = np.zeros((imgH, imgW), dtype=np.float32)
factor = 1920 * 2 // imgW
for indFrameH in range(int(imgH / (256 * 2 // factor))):
for indFrameW in range(int(imgW / (384 * 2 // factor))):
mask[indFrameH * (256 * 2 // factor) + (128 * 2 // factor) - (64 * 2 // factor) :
indFrameH * (256 * 2 // factor) + (128 * 2 // factor) + (64 * 2 // factor),
indFrameW * (384 * 2 // factor) + (192 * 2 // factor) - (64 * 2 // factor) :
indFrameW * (384 * 2 // factor) + (192 * 2 // factor) + (64 * 2 // factor)] = 1
if type == 'ori':
return mask
elif type == 'flow':
# Dilate 25 pixel so that all known pixel is trustworthy
return scipy.ndimage.binary_dilation(mask, iterations=15)
def bboxes_mask_large(imgH, imgW, type='ori'):
mask = np.zeros((imgH, imgW), dtype=np.float32)
# mask[50 : 450, 280: 680] = 1
mask[150 : 350, 350: 650] = 1
if type == 'ori':
return mask
elif type == 'flow':
# Dilate 35 pixel so that all known pixel is trustworthy
return scipy.ndimage.binary_dilation(mask, iterations=35)
def gradient_mask(mask):
gradient_mask = np.logical_or.reduce((mask,
np.concatenate((mask[1:, :], np.zeros((1, mask.shape[1]), dtype=np.bool)), axis=0),
np.concatenate((mask[:, 1:], np.zeros((mask.shape[0], 1), dtype=np.bool)), axis=1)))
return gradient_mask
def flow_edge(flow, mask=None):
# mask: 1 indicates the missing region
if not isinstance(mask, np.ndarray):
mask = None
else:
# using 'mask' parameter prevents canny to detect edges for the masked regions
mask = (1 - mask).astype(np.bool)
flow_mag = (flow[:, :, 0] ** 2 + flow[:, :, 1] ** 2) ** 0.5
flow_mag = flow_mag / flow_mag.max()
edge_canny_flow = canny_flow(flow_mag, flow, mask=mask)
edge_canny = canny(flow_mag, sigma=2, mask=mask)
if edge_canny_flow.sum() > edge_canny.sum():
return edge_canny_flow
else:
return edge_canny
def np_to_torch(img_np):
'''Converts image in numpy.array to torch.Tensor.
From C x W x H [0..1] to C x W x H [0..1]
'''
return torch.from_numpy(img_np)[None, :]
def torch_to_np(img_var):
'''Converts an image in torch.Tensor format to np.array.
From 1 x C x W x H [0..1] to C x W x H [0..1]
'''
return img_var.detach().cpu().numpy()[0]
def sigmoid_(x, thres):
return 1. / (1 + np.exp(-x + thres))
# def softmax(x):
# e_x = np.exp(x - np.max(x))
# return e_x / e_x.sum()
def softmax(x, axis=None, mask_=None):
if mask_ is None:
mask_ = np.ones(x.shape)
x = (x - x.max(axis=axis, keepdims=True))
y = np.multiply(np.exp(x), mask_)
return y / y.sum(axis=axis, keepdims=True)
# Bypass cv2's SHRT_MAX limitation
def interp(img, x, y):
x = x.astype(np.float32).reshape(1, -1)
y = y.astype(np.float32).reshape(1, -1)
assert(x.shape == y.shape)
numPix = x.shape[1]
len_padding = (numPix // 1024 + 1) * 1024 - numPix
padding = np.zeros((1, len_padding)).astype(np.float32)
map_x = np.concatenate((x, padding), axis=1).reshape(1024, numPix // 1024 + 1)
map_y = np.concatenate((y, padding), axis=1).reshape(1024, numPix // 1024 + 1)
# Note that cv2 takes the input in opposite order, i.e. cv2.remap(img, x, y)
mapped_img = cv2.remap(img, map_x, map_y, cv2.INTER_LINEAR)
if len(img.shape) == 2:
mapped_img = mapped_img.reshape(-1)[:numPix]
else:
mapped_img = mapped_img.reshape(-1, img.shape[2])[:numPix, :]
return mapped_img
def imsave(img, path):
im = Image.fromarray(img.cpu().numpy().astype(np.uint8).squeeze())
im.save(path)
def postprocess(img):
# [0, 1] => [0, 255]
img = img * 255.0
img = img.permute(0, 2, 3, 1)
return img.int()
# Backward flow propagating and forward flow propagating consistency check
def BFconsistCheck(flowB_neighbor, flowF_vertical, flowF_horizont,
holepixPos, consistencyThres):
flowBF_neighbor = copy.deepcopy(flowB_neighbor)
# After the backward and forward propagation, the pixel should go back
# to the original location.
flowBF_neighbor[:, 0] += interp(flowF_vertical,
flowB_neighbor[:, 1],
flowB_neighbor[:, 0])
flowBF_neighbor[:, 1] += interp(flowF_horizont,
flowB_neighbor[:, 1],
flowB_neighbor[:, 0])
flowBF_neighbor[:, 2] += 1
# Check photometric consistency
BFdiff = ((flowBF_neighbor - holepixPos)[:, 0] ** 2
+ (flowBF_neighbor - holepixPos)[:, 1] ** 2) ** 0.5
IsConsist = BFdiff < consistencyThres
return IsConsist, BFdiff
# Forward flow propagating and backward flow propagating consistency check
def FBconsistCheck(flowF_neighbor, flowB_vertical, flowB_horizont,
holepixPos, consistencyThres):
flowFB_neighbor = copy.deepcopy(flowF_neighbor)
# After the forward and backward propagation, the pixel should go back
# to the original location.
flowFB_neighbor[:, 0] += interp(flowB_vertical,
flowF_neighbor[:, 1],
flowF_neighbor[:, 0])
flowFB_neighbor[:, 1] += interp(flowB_horizont,
flowF_neighbor[:, 1],
flowF_neighbor[:, 0])
flowFB_neighbor[:, 2] -= 1
# Check photometric consistency
FBdiff = ((flowFB_neighbor - holepixPos)[:, 0] ** 2
+ (flowFB_neighbor - holepixPos)[:, 1] ** 2) ** 0.5
IsConsist = FBdiff < consistencyThres
return IsConsist, FBdiff
def consistCheck(flowF, flowB):
# |--------------------| |--------------------|
# | y | | v |
# | x * | | u * |
# | | | |
# |--------------------| |--------------------|
# sub: numPix * [y x t]
imgH, imgW, _ = flowF.shape
(fy, fx) = np.mgrid[0 : imgH, 0 : imgW].astype(np.float32)
fxx = fx + flowB[:, :, 0] # horizontal
fyy = fy + flowB[:, :, 1] # vertical
u = (fxx + cv2.remap(flowF[:, :, 0], fxx, fyy, cv2.INTER_LINEAR) - fx)
v = (fyy + cv2.remap(flowF[:, :, 1], fxx, fyy, cv2.INTER_LINEAR) - fy)
BFdiff = (u ** 2 + v ** 2) ** 0.5
return BFdiff, np.stack((u, v), axis=2)
def get_KeySourceFrame_flowNN(sub,
indFrame,
mask,
videoNonLocalFlowB,
videoNonLocalFlowF,
video,
consistencyThres):
imgH, imgW, _, _, nFrame = videoNonLocalFlowF.shape
KeySourceFrame = [0, nFrame // 2, nFrame - 1]
# Bool indicator of missing pixels at frame t
holepixPosInd = (sub[:, 2] == indFrame)
# Hole pixel location at frame t, i.e. [x, y, t]
holepixPos = sub[holepixPosInd, :]
HaveKeySourceFrameFlowNN = np.zeros((imgH, imgW, 3))
imgKeySourceFrameFlowNN = np.zeros((imgH, imgW, 3, 3))
for KeySourceFrameIdx in range(3):
# flowF_neighbor
flowF_neighbor = copy.deepcopy(holepixPos)
flowF_neighbor = flowF_neighbor.astype(np.float32)
flowF_vertical = videoNonLocalFlowF[:, :, 1, KeySourceFrameIdx, indFrame]
flowF_horizont = videoNonLocalFlowF[:, :, 0, KeySourceFrameIdx, indFrame]
flowB_vertical = videoNonLocalFlowB[:, :, 1, KeySourceFrameIdx, indFrame]
flowB_horizont = videoNonLocalFlowB[:, :, 0, KeySourceFrameIdx, indFrame]
flowF_neighbor[:, 0] += flowF_vertical[holepixPos[:, 0], holepixPos[:, 1]]
flowF_neighbor[:, 1] += flowF_horizont[holepixPos[:, 0], holepixPos[:, 1]]
flowF_neighbor[:, 2] = KeySourceFrame[KeySourceFrameIdx]
# Round the forward flow neighbor location
flow_neighbor_int = np.round(copy.deepcopy(flowF_neighbor)).astype(np.int32)
# Check the forawrd/backward consistency
IsConsist, _ = FBconsistCheck(flowF_neighbor, flowB_vertical,
flowB_horizont, holepixPos, consistencyThres)
# Check out-of-boundary
ValidPos = np.logical_and(
np.logical_and(flow_neighbor_int[:, 0] >= 0,
flow_neighbor_int[:, 0] < imgH),
np.logical_and(flow_neighbor_int[:, 1] >= 0,
flow_neighbor_int[:, 1] < imgW))
holepixPos_ = copy.deepcopy(holepixPos)[ValidPos, :]
flow_neighbor_int = flow_neighbor_int[ValidPos, :]
flowF_neighbor = flowF_neighbor[ValidPos, :]
IsConsist = IsConsist[ValidPos]
KnownInd = mask[flow_neighbor_int[:, 0],
flow_neighbor_int[:, 1],
KeySourceFrame[KeySourceFrameIdx]] == 0
KnownInd = np.logical_and(KnownInd, IsConsist)
imgKeySourceFrameFlowNN[:, :, :, KeySourceFrameIdx] = \
copy.deepcopy(video[:, :, :, indFrame])
imgKeySourceFrameFlowNN[holepixPos_[KnownInd, 0],
holepixPos_[KnownInd, 1],
:, KeySourceFrameIdx] = \
interp(video[:, :, :, KeySourceFrame[KeySourceFrameIdx]],
flowF_neighbor[KnownInd, 1].reshape(-1),
flowF_neighbor[KnownInd, 0].reshape(-1))
HaveKeySourceFrameFlowNN[holepixPos_[KnownInd, 0],
holepixPos_[KnownInd, 1],
KeySourceFrameIdx] = 1
return HaveKeySourceFrameFlowNN, imgKeySourceFrameFlowNN
#
def get_KeySourceFrame_flowNN_gradient(sub,
indFrame,
mask,
videoNonLocalFlowB,
videoNonLocalFlowF,
gradient_x,
gradient_y,
consistencyThres):
imgH, imgW, _, _, nFrame = videoNonLocalFlowF.shape
KeySourceFrame = [0, nFrame // 2, nFrame - 1]
# Bool indicator of missing pixels at frame t
holepixPosInd = (sub[:, 2] == indFrame)
# Hole pixel location at frame t, i.e. [x, y, t]
holepixPos = sub[holepixPosInd, :]
HaveKeySourceFrameFlowNN = np.zeros((imgH, imgW, 3))
gradient_x_KeySourceFrameFlowNN = np.zeros((imgH, imgW, 3, 3))
gradient_y_KeySourceFrameFlowNN = np.zeros((imgH, imgW, 3, 3))
for KeySourceFrameIdx in range(3):
# flowF_neighbor
flowF_neighbor = copy.deepcopy(holepixPos)
flowF_neighbor = flowF_neighbor.astype(np.float32)
flowF_vertical = videoNonLocalFlowF[:, :, 1, KeySourceFrameIdx, indFrame]
flowF_horizont = videoNonLocalFlowF[:, :, 0, KeySourceFrameIdx, indFrame]
flowB_vertical = videoNonLocalFlowB[:, :, 1, KeySourceFrameIdx, indFrame]
flowB_horizont = videoNonLocalFlowB[:, :, 0, KeySourceFrameIdx, indFrame]
flowF_neighbor[:, 0] += flowF_vertical[holepixPos[:, 0], holepixPos[:, 1]]
flowF_neighbor[:, 1] += flowF_horizont[holepixPos[:, 0], holepixPos[:, 1]]
flowF_neighbor[:, 2] = KeySourceFrame[KeySourceFrameIdx]
# Round the forward flow neighbor location
flow_neighbor_int = np.round(copy.deepcopy(flowF_neighbor)).astype(np.int32)
# Check the forawrd/backward consistency
IsConsist, _ = FBconsistCheck(flowF_neighbor, flowB_vertical,
flowB_horizont, holepixPos, consistencyThres)
# Check out-of-boundary
ValidPos = np.logical_and(
np.logical_and(flow_neighbor_int[:, 0] >= 0,
flow_neighbor_int[:, 0] < imgH - 1),
np.logical_and(flow_neighbor_int[:, 1] >= 0,
flow_neighbor_int[:, 1] < imgW - 1))
holepixPos_ = copy.deepcopy(holepixPos)[ValidPos, :]
flow_neighbor_int = flow_neighbor_int[ValidPos, :]
flowF_neighbor = flowF_neighbor[ValidPos, :]
IsConsist = IsConsist[ValidPos]
KnownInd = mask[flow_neighbor_int[:, 0],
flow_neighbor_int[:, 1],
KeySourceFrame[KeySourceFrameIdx]] == 0
KnownInd = np.logical_and(KnownInd, IsConsist)
gradient_x_KeySourceFrameFlowNN[:, :, :, KeySourceFrameIdx] = \
copy.deepcopy(gradient_x[:, :, :, indFrame])
gradient_y_KeySourceFrameFlowNN[:, :, :, KeySourceFrameIdx] = \
copy.deepcopy(gradient_y[:, :, :, indFrame])
gradient_x_KeySourceFrameFlowNN[holepixPos_[KnownInd, 0],
holepixPos_[KnownInd, 1],
:, KeySourceFrameIdx] = \
interp(gradient_x[:, :, :, KeySourceFrame[KeySourceFrameIdx]],
flowF_neighbor[KnownInd, 1].reshape(-1),
flowF_neighbor[KnownInd, 0].reshape(-1))
gradient_y_KeySourceFrameFlowNN[holepixPos_[KnownInd, 0],
holepixPos_[KnownInd, 1],
:, KeySourceFrameIdx] = \
interp(gradient_y[:, :, :, KeySourceFrame[KeySourceFrameIdx]],
flowF_neighbor[KnownInd, 1].reshape(-1),
flowF_neighbor[KnownInd, 0].reshape(-1))
HaveKeySourceFrameFlowNN[holepixPos_[KnownInd, 0],
holepixPos_[KnownInd, 1],
KeySourceFrameIdx] = 1
return HaveKeySourceFrameFlowNN, gradient_x_KeySourceFrameFlowNN, gradient_y_KeySourceFrameFlowNN
class Progbar(object):
"""Displays a progress bar.
Arguments:
target: Total number of steps expected, None if unknown.
width: Progress bar width on screen.
verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
stateful_metrics: Iterable of string names of metrics that
should *not* be averaged over time. Metrics in this list
will be displayed as-is. All others will be averaged
by the progbar before display.
interval: Minimum visual progress update interval (in seconds).
"""
def __init__(self, target, width=25, verbose=1, interval=0.05,
stateful_metrics=None):
self.target = target
self.width = width
self.verbose = verbose
self.interval = interval
if stateful_metrics:
self.stateful_metrics = set(stateful_metrics)
else:
self.stateful_metrics = set()
self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and
sys.stdout.isatty()) or
'ipykernel' in sys.modules or
'posix' in sys.modules)
self._total_width = 0
self._seen_so_far = 0
# We use a dict + list to avoid garbage collection
# issues found in OrderedDict
self._values = {}
self._values_order = []
self._start = time.time()
self._last_update = 0
def update(self, current, values=None):
"""Updates the progress bar.
Arguments:
current: Index of current step.
values: List of tuples:
`(name, value_for_last_step)`.
If `name` is in `stateful_metrics`,
`value_for_last_step` will be displayed as-is.
Else, an average of the metric over time will be displayed.
"""
values = values or []
for k, v in values:
if k not in self._values_order:
self._values_order.append(k)
if k not in self.stateful_metrics:
if k not in self._values:
self._values[k] = [v * (current - self._seen_so_far),
current - self._seen_so_far]
else:
self._values[k][0] += v * (current - self._seen_so_far)
self._values[k][1] += (current - self._seen_so_far)
else:
self._values[k] = v
self._seen_so_far = current
now = time.time()
info = ' - %.0fs' % (now - self._start)
if self.verbose == 1:
if (now - self._last_update < self.interval and
self.target is not None and current < self.target):
return
prev_total_width = self._total_width
if self._dynamic_display:
sys.stdout.write('\b' * prev_total_width)
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
if self.target is not None:
numdigits = int(np.floor(np.log10(self.target))) + 1
barstr = '%%%dd/%d [' % (numdigits, self.target)
bar = barstr % current
prog = float(current) / self.target
prog_width = int(self.width * prog)
if prog_width > 0:
bar += ('=' * (prog_width - 1))
if current < self.target:
bar += '>'
else:
bar += '='
bar += ('.' * (self.width - prog_width))
bar += ']'
else:
bar = '%7d/Unknown' % current
self._total_width = len(bar)
sys.stdout.write(bar)
if current:
time_per_unit = (now - self._start) / current
else:
time_per_unit = 0
if self.target is not None and current < self.target:
eta = time_per_unit * (self.target - current)
if eta > 3600:
eta_format = '%d:%02d:%02d' % (eta // 3600,
(eta % 3600) // 60,
eta % 60)
elif eta > 60:
eta_format = '%d:%02d' % (eta // 60, eta % 60)
else:
eta_format = '%ds' % eta
info = ' - ETA: %s' % eta_format
else:
if time_per_unit >= 1:
info += ' %.0fs/step' % time_per_unit
elif time_per_unit >= 1e-3:
info += ' %.0fms/step' % (time_per_unit * 1e3)
else:
info += ' %.0fus/step' % (time_per_unit * 1e6)
for k in self._values_order:
info += ' - %s:' % k
if isinstance(self._values[k], list):
avg = np.mean(self._values[k][0] / max(1, self._values[k][1]))
if abs(avg) > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
else:
info += ' %s' % self._values[k]
self._total_width += len(info)
if prev_total_width > self._total_width:
info += (' ' * (prev_total_width - self._total_width))
if self.target is not None and current >= self.target:
info += '\n'
sys.stdout.write(info)
sys.stdout.flush()
elif self.verbose == 2:
if self.target is None or current >= self.target:
for k in self._values_order:
info += ' - %s:' % k
avg = np.mean(self._values[k][0] / max(1, self._values[k][1]))
if avg > 1e-3:
info += ' %.4f' % avg
else:
info += ' %.4e' % avg
info += '\n'
sys.stdout.write(info)
sys.stdout.flush()
self._last_update = now
def add(self, n, values=None):
self.update(self._seen_so_far + n, values)
class PSNR(nn.Module):
def __init__(self, max_val):
super(PSNR, self).__init__()
base10 = torch.log(torch.tensor(10.0))
max_val = torch.tensor(max_val).float()
self.register_buffer('base10', base10)
self.register_buffer('max_val', 20 * torch.log(max_val) / base10)
def __call__(self, a, b):
mse = torch.mean((a.float() - b.float()) ** 2)
if mse == 0:
return torch.tensor(0)
return self.max_val - 10 * torch.log(mse) / self.base10
# Get surrounding integer postiion
def IntPos(CurPos):
x_floor = np.expand_dims(np.floor(CurPos[:, 0]).astype(np.int32), 1)
x_ceil = np.expand_dims(np.ceil(CurPos[:, 0]).astype(np.int32), 1)
y_floor = np.expand_dims(np.floor(CurPos[:, 1]).astype(np.int32), 1)
y_ceil = np.expand_dims(np.ceil(CurPos[:, 1]).astype(np.int32), 1)
Fm = np.expand_dims(np.floor(CurPos[:, 2]).astype(np.int32), 1)
Pos_tl = np.concatenate((x_floor, y_floor, Fm), 1)
Pos_tr = np.concatenate((x_ceil, y_floor, Fm), 1)
Pos_bl = np.concatenate((x_floor, y_ceil, Fm), 1)
Pos_br = np.concatenate((x_ceil, y_ceil, Fm), 1)
return Pos_tl, Pos_tr, Pos_bl, Pos_br
|