File size: 1,454 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from pycocotools.coco import COCO
from os.path import join
import json
dataDir = '.'
for data_subset in ['val2017', 'train2017']:
dataset = dict()
annFile = '{}/annotations/instances_{}.json'.format(dataDir, data_subset)
coco = COCO(annFile)
n_imgs = len(coco.imgs)
for n, img_id in enumerate(coco.imgs):
print('subset: {} image id: {:04d} / {:04d}'.format(data_subset, n, n_imgs))
img = coco.loadImgs(img_id)[0]
annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
anns = coco.loadAnns(annIds)
crop_base_path = join(data_subset, img['file_name'].split('/')[-1].split('.')[0])
if len(anns) > 0:
dataset[crop_base_path] = dict()
for track_id, ann in enumerate(anns):
rect = ann['bbox']
if rect[2] <= 0 or rect[3] <= 0: # lead nan error in cls.
continue
bbox = [rect[0], rect[1], rect[0]+rect[2]-1, rect[1]+rect[3]-1] # x1,y1,x2,y2
dataset[crop_base_path]['{:02d}'.format(track_id)] = {'000000': bbox}
print('save json (dataset), please wait 20 seconds~')
json.dump(dataset, open('{}.json'.format(data_subset), 'w'), indent=4, sort_keys=True)
print('done!')
|