File size: 11,437 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# distutils: language = c
# distutils: sources = common/maskApi.c
#**************************************************************************
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
# Licensed under the Simplified BSD License [see coco/license.txt]
#**************************************************************************
__author__ = 'tsungyi'
import sys
PYTHON_VERSION = sys.version_info[0]
# import both Python-level and C-level symbols of Numpy
# the API uses Numpy to interface C and Python
import numpy as np
cimport numpy as np
from libc.stdlib cimport malloc, free
# intialized Numpy. must do.
np.import_array()
# import numpy C function
# we use PyArray_ENABLEFLAGS to make Numpy ndarray responsible to memoery management
cdef extern from "numpy/arrayobject.h":
void PyArray_ENABLEFLAGS(np.ndarray arr, int flags)
# Declare the prototype of the C functions in MaskApi.h
cdef extern from "maskApi.h":
ctypedef unsigned int uint
ctypedef unsigned long siz
ctypedef unsigned char byte
ctypedef double* BB
ctypedef struct RLE:
siz h,
siz w,
siz m,
uint* cnts,
void rlesInit( RLE **R, siz n )
void rleEncode( RLE *R, const byte *M, siz h, siz w, siz n )
void rleDecode( const RLE *R, byte *mask, siz n )
void rleMerge( const RLE *R, RLE *M, siz n, int intersect )
void rleArea( const RLE *R, siz n, uint *a )
void rleIou( RLE *dt, RLE *gt, siz m, siz n, byte *iscrowd, double *o )
void bbIou( BB dt, BB gt, siz m, siz n, byte *iscrowd, double *o )
void rleToBbox( const RLE *R, BB bb, siz n )
void rleFrBbox( RLE *R, const BB bb, siz h, siz w, siz n )
void rleFrPoly( RLE *R, const double *xy, siz k, siz h, siz w )
char* rleToString( const RLE *R )
void rleFrString( RLE *R, char *s, siz h, siz w )
# python class to wrap RLE array in C
# the class handles the memory allocation and deallocation
cdef class RLEs:
cdef RLE *_R
cdef siz _n
def __cinit__(self, siz n =0):
rlesInit(&self._R, n)
self._n = n
# free the RLE array here
def __dealloc__(self):
if self._R is not NULL:
for i in range(self._n):
free(self._R[i].cnts)
free(self._R)
def __getattr__(self, key):
if key == 'n':
return self._n
raise AttributeError(key)
# python class to wrap Mask array in C
# the class handles the memory allocation and deallocation
cdef class Masks:
cdef byte *_mask
cdef siz _h
cdef siz _w
cdef siz _n
def __cinit__(self, h, w, n):
self._mask = <byte*> malloc(h*w*n* sizeof(byte))
self._h = h
self._w = w
self._n = n
# def __dealloc__(self):
# the memory management of _mask has been passed to np.ndarray
# it doesn't need to be freed here
# called when passing into np.array() and return an np.ndarray in column-major order
def __array__(self):
cdef np.npy_intp shape[1]
shape[0] = <np.npy_intp> self._h*self._w*self._n
# Create a 1D array, and reshape it to fortran/Matlab column-major array
ndarray = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT8, self._mask).reshape((self._h, self._w, self._n), order='F')
# The _mask allocated by Masks is now handled by ndarray
PyArray_ENABLEFLAGS(ndarray, np.NPY_OWNDATA)
return ndarray
# internal conversion from Python RLEs object to compressed RLE format
def _toString(RLEs Rs):
cdef siz n = Rs.n
cdef bytes py_string
cdef char* c_string
objs = []
for i in range(n):
c_string = rleToString( <RLE*> &Rs._R[i] )
py_string = c_string
objs.append({
'size': [Rs._R[i].h, Rs._R[i].w],
'counts': py_string
})
free(c_string)
return objs
# internal conversion from compressed RLE format to Python RLEs object
def _frString(rleObjs):
cdef siz n = len(rleObjs)
Rs = RLEs(n)
cdef bytes py_string
cdef char* c_string
for i, obj in enumerate(rleObjs):
if PYTHON_VERSION == 2:
py_string = str(obj['counts']).encode('utf8')
elif PYTHON_VERSION == 3:
py_string = str.encode(obj['counts']) if type(obj['counts']) == str else obj['counts']
else:
raise Exception('Python version must be 2 or 3')
c_string = py_string
rleFrString( <RLE*> &Rs._R[i], <char*> c_string, obj['size'][0], obj['size'][1] )
return Rs
# encode mask to RLEs objects
# list of RLE string can be generated by RLEs member function
def encode(np.ndarray[np.uint8_t, ndim=3, mode='fortran'] mask):
h, w, n = mask.shape[0], mask.shape[1], mask.shape[2]
cdef RLEs Rs = RLEs(n)
rleEncode(Rs._R,<byte*>mask.data,h,w,n)
objs = _toString(Rs)
return objs
# decode mask from compressed list of RLE string or RLEs object
def decode(rleObjs):
cdef RLEs Rs = _frString(rleObjs)
h, w, n = Rs._R[0].h, Rs._R[0].w, Rs._n
masks = Masks(h, w, n)
rleDecode(<RLE*>Rs._R, masks._mask, n);
return np.array(masks)
def merge(rleObjs, intersect=0):
cdef RLEs Rs = _frString(rleObjs)
cdef RLEs R = RLEs(1)
rleMerge(<RLE*>Rs._R, <RLE*> R._R, <siz> Rs._n, intersect)
obj = _toString(R)[0]
return obj
def area(rleObjs):
cdef RLEs Rs = _frString(rleObjs)
cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint))
rleArea(Rs._R, Rs._n, _a)
cdef np.npy_intp shape[1]
shape[0] = <np.npy_intp> Rs._n
a = np.array((Rs._n, ), dtype=np.uint8)
a = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT32, _a)
PyArray_ENABLEFLAGS(a, np.NPY_OWNDATA)
return a
# iou computation. support function overload (RLEs-RLEs and bbox-bbox).
def iou( dt, gt, pyiscrowd ):
def _preproc(objs):
if len(objs) == 0:
return objs
if type(objs) == np.ndarray:
if len(objs.shape) == 1:
objs = objs.reshape((objs[0], 1))
# check if it's Nx4 bbox
if not len(objs.shape) == 2 or not objs.shape[1] == 4:
raise Exception('numpy ndarray input is only for *bounding boxes* and should have Nx4 dimension')
objs = objs.astype(np.double)
elif type(objs) == list:
# check if list is in box format and convert it to np.ndarray
isbox = np.all(np.array([(len(obj)==4) and ((type(obj)==list) or (type(obj)==np.ndarray)) for obj in objs]))
isrle = np.all(np.array([type(obj) == dict for obj in objs]))
if isbox:
objs = np.array(objs, dtype=np.double)
if len(objs.shape) == 1:
objs = objs.reshape((1,objs.shape[0]))
elif isrle:
objs = _frString(objs)
else:
raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])')
else:
raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.')
return objs
def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou):
rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data )
def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou):
bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data )
def _len(obj):
cdef siz N = 0
if type(obj) == RLEs:
N = obj.n
elif len(obj)==0:
pass
elif type(obj) == np.ndarray:
N = obj.shape[0]
return N
# convert iscrowd to numpy array
cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8)
# simple type checking
cdef siz m, n
dt = _preproc(dt)
gt = _preproc(gt)
m = _len(dt)
n = _len(gt)
if m == 0 or n == 0:
return []
if not type(dt) == type(gt):
raise Exception('The dt and gt should have the same data type, either RLEs, list or np.ndarray')
# define local variables
cdef double* _iou = <double*> 0
cdef np.npy_intp shape[1]
# check type and assign iou function
if type(dt) == RLEs:
_iouFun = _rleIou
elif type(dt) == np.ndarray:
_iouFun = _bbIou
else:
raise Exception('input data type not allowed.')
_iou = <double*> malloc(m*n* sizeof(double))
iou = np.zeros((m*n, ), dtype=np.double)
shape[0] = <np.npy_intp> m*n
iou = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _iou)
PyArray_ENABLEFLAGS(iou, np.NPY_OWNDATA)
_iouFun(dt, gt, iscrowd, m, n, iou)
return iou.reshape((m,n), order='F')
def toBbox( rleObjs ):
cdef RLEs Rs = _frString(rleObjs)
cdef siz n = Rs.n
cdef BB _bb = <BB> malloc(4*n* sizeof(double))
rleToBbox( <const RLE*> Rs._R, _bb, n )
cdef np.npy_intp shape[1]
shape[0] = <np.npy_intp> 4*n
bb = np.array((1,4*n), dtype=np.double)
bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4))
PyArray_ENABLEFLAGS(bb, np.NPY_OWNDATA)
return bb
def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ):
cdef siz n = bb.shape[0]
Rs = RLEs(n)
rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n )
objs = _toString(Rs)
return objs
def frPoly( poly, siz h, siz w ):
cdef np.ndarray[np.double_t, ndim=1] np_poly
n = len(poly)
Rs = RLEs(n)
for i, p in enumerate(poly):
np_poly = np.array(p, dtype=np.double, order='F')
rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w )
objs = _toString(Rs)
return objs
def frUncompressedRLE(ucRles, siz h, siz w):
cdef np.ndarray[np.uint32_t, ndim=1] cnts
cdef RLE R
cdef uint *data
n = len(ucRles)
objs = []
for i in range(n):
Rs = RLEs(1)
cnts = np.array(ucRles[i]['counts'], dtype=np.uint32)
# time for malloc can be saved here but it's fine
data = <uint*> malloc(len(cnts)* sizeof(uint))
for j in range(len(cnts)):
data[j] = <uint> cnts[j]
R = RLE(ucRles[i]['size'][0], ucRles[i]['size'][1], len(cnts), <uint*> data)
Rs._R[0] = R
objs.append(_toString(Rs)[0])
return objs
def frPyObjects(pyobj, h, w):
# encode rle from a list of python objects
if type(pyobj) == np.ndarray:
objs = frBbox(pyobj, h, w)
elif type(pyobj) == list and len(pyobj[0]) == 4:
objs = frBbox(pyobj, h, w)
elif type(pyobj) == list and len(pyobj[0]) > 4:
objs = frPoly(pyobj, h, w)
elif type(pyobj) == list and type(pyobj[0]) == dict \
and 'counts' in pyobj[0] and 'size' in pyobj[0]:
objs = frUncompressedRLE(pyobj, h, w)
# encode rle from single python object
elif type(pyobj) == list and len(pyobj) == 4:
objs = frBbox([pyobj], h, w)[0]
elif type(pyobj) == list and len(pyobj) > 4:
objs = frPoly([pyobj], h, w)[0]
elif type(pyobj) == dict and 'counts' in pyobj and 'size' in pyobj:
objs = frUncompressedRLE([pyobj], h, w)[0]
else:
raise Exception('input type is not supported.')
return objs
|