File size: 1,969 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from os.path import join
from os import listdir
import cv2
import numpy as np
import glob
import xml.etree.ElementTree as ET

visual = False
color_bar = np.random.randint(0, 255, (90, 3))

VID_base_path = './ILSVRC2015'
ann_base_path = join(VID_base_path, 'Annotations/DET/train/')
img_base_path = join(VID_base_path, 'Data/DET/train/')
sub_sets = sorted({'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'})
for sub_set in sub_sets:
    sub_set_base_path = join(ann_base_path, sub_set)
    class_names = sorted(listdir(sub_set_base_path))
    for vi, class_name in enumerate(class_names):
        print('subset: {} video id: {:04d} / {:04d}'.format(sub_set, vi, len(class_names)))

        class_base_path = join(sub_set_base_path, class_name)
        xmls = sorted(glob.glob(join(class_base_path, '*.xml')))
        for xml in xmls:
            f = dict()
            xmltree = ET.parse(xml)
            size = xmltree.findall('size')[0]
            frame_sz = [int(it.text) for it in size]
            objects = xmltree.findall('object')
            # if visual:
            img_path = xml.replace('xml', 'JPEG').replace('Annotations', 'Data')
            im = cv2.imread(img_path)
            for object_iter in objects:
                bndbox = object_iter.find('bndbox')
                bbox = [int(bndbox.find('xmin').text), int(bndbox.find('ymin').text),
                        int(bndbox.find('xmax').text), int(bndbox.find('ymax').text)]
                if visual:
                    pt1 = (int(bbox[0]), int(bbox[1]))
                    pt2 = (int(bbox[2]), int(bbox[3]))
                    cv2.rectangle(im, pt1, pt2, color_bar[vi], 3)
            if visual:
                cv2.imshow('img', im)
                cv2.waitKey(500)

print('done!')