File size: 4,562 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
import numpy as np
from collections import namedtuple

Corner = namedtuple('Corner', 'x1 y1 x2 y2')
BBox = Corner
Center = namedtuple('Center', 'x y w h')


def corner2center(corner):
    """
    :param corner: Corner or np.array 4*N
    :return: Center or 4 np.array N
    """
    if isinstance(corner, Corner):
        x1, y1, x2, y2 = corner
        return Center((x1 + x2) * 0.5, (y1 + y2) * 0.5, (x2 - x1), (y2 - y1))
    else:
        x1, y1, x2, y2 = corner[0], corner[1], corner[2], corner[3]
        x = (x1 + x2) * 0.5
        y = (y1 + y2) * 0.5
        w = x2 - x1
        h = y2 - y1
        return x, y, w, h


def center2corner(center):
    """
    :param center: Center or np.array 4*N
    :return: Corner or np.array 4*N
    """
    if isinstance(center, Center):
        x, y, w, h = center
        return Corner(x - w * 0.5, y - h * 0.5, x + w * 0.5, y + h * 0.5)
    else:
        x, y, w, h = center[0], center[1], center[2], center[3]
        x1 = x - w * 0.5
        y1 = y - h * 0.5
        x2 = x + w * 0.5
        y2 = y + h * 0.5
        return x1, y1, x2, y2


def cxy_wh_2_rect(pos, sz):
    return np.array([pos[0]-sz[0]/2, pos[1]-sz[1]/2, sz[0], sz[1]])  # 0-index


def get_axis_aligned_bbox(region):
    nv = region.size
    if nv == 8:
        cx = np.mean(region[0::2])
        cy = np.mean(region[1::2])
        x1 = min(region[0::2])
        x2 = max(region[0::2])
        y1 = min(region[1::2])
        y2 = max(region[1::2])
        A1 = np.linalg.norm(region[0:2] - region[2:4]) * np.linalg.norm(region[2:4] - region[4:6])
        A2 = (x2 - x1) * (y2 - y1)
        s = np.sqrt(A1 / A2)
        w = s * (x2 - x1) + 1
        h = s * (y2 - y1) + 1
    else:
        x = region[0]
        y = region[1]
        w = region[2]
        h = region[3]
        cx = x+w/2
        cy = y+h/2

    return cx, cy, w, h


def aug_apply(bbox, param, shape, inv=False, rd=False):
    """
    apply augmentation
    :param bbox: original bbox in image
    :param param: augmentation param, shift/scale
    :param shape: image shape, h, w, (c)
    :param inv: inverse
    :param rd: round bbox
    :return: bbox(, param)
        bbox: augmented bbox
        param: real augmentation param
    """
    if not inv:
        center = corner2center(bbox)
        original_center = center

        real_param = {}
        if 'scale' in param:
            scale_x, scale_y = param['scale']
            imh, imw = shape[:2]
            h, w = center.h, center.w

            scale_x = min(scale_x, float(imw) / w)
            scale_y = min(scale_y, float(imh) / h)

            # center.w *= scale_x
            # center.h *= scale_y
            center = Center(center.x, center.y, center.w * scale_x, center.h * scale_y)

        bbox = center2corner(center)

        if 'shift' in param:
            tx, ty = param['shift']
            x1, y1, x2, y2 = bbox
            imh, imw = shape[:2]

            tx = max(-x1, min(imw - 1 - x2, tx))
            ty = max(-y1, min(imh - 1 - y2, ty))

            bbox = Corner(x1 + tx, y1 + ty, x2 + tx, y2 + ty)

        if rd:
            bbox = Corner(*map(round, bbox))

        current_center = corner2center(bbox)

        real_param['scale'] = current_center.w / original_center.w, current_center.h / original_center.h
        real_param['shift'] = current_center.x - original_center.x, current_center.y - original_center.y

        return bbox, real_param
    else:
        if 'scale' in param:
            scale_x, scale_y = param['scale']
        else:
            scale_x, scale_y = 1., 1.

        if 'shift' in param:
            tx, ty = param['shift']
        else:
            tx, ty = 0, 0

        center = corner2center(bbox)

        center = Center(center.x - tx, center.y - ty, center.w / scale_x, center.h / scale_y)

        return center2corner(center)


def IoU(rect1, rect2):
    # overlap
    x1, y1, x2, y2 = rect1[0], rect1[1], rect1[2], rect1[3]
    tx1, ty1, tx2, ty2 = rect2[0], rect2[1], rect2[2], rect2[3]

    xx1 = np.maximum(tx1, x1)
    yy1 = np.maximum(ty1, y1)
    xx2 = np.minimum(tx2, x2)
    yy2 = np.minimum(ty2, y2)

    ww = np.maximum(0, xx2 - xx1)
    hh = np.maximum(0, yy2 - yy1)

    area = (x2-x1) * (y2-y1)

    target_a = (tx2-tx1) * (ty2 - ty1)

    inter = ww * hh
    overlap = inter / (area + target_a - inter)

    return overlap