File size: 2,913 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import torch
import logging
logger = logging.getLogger('global')
def check_keys(model, pretrained_state_dict):
ckpt_keys = set(pretrained_state_dict.keys())
model_keys = set(model.state_dict().keys())
used_pretrained_keys = model_keys & ckpt_keys
unused_pretrained_keys = ckpt_keys - model_keys
missing_keys = model_keys - ckpt_keys
if len(missing_keys) > 0:
logger.info('[Warning] missing keys: {}'.format(missing_keys))
logger.info('missing keys:{}'.format(len(missing_keys)))
if len(unused_pretrained_keys) > 0:
logger.info('[Warning] unused_pretrained_keys: {}'.format(unused_pretrained_keys))
logger.info('unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
logger.info('used keys:{}'.format(len(used_pretrained_keys)))
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
return True
def remove_prefix(state_dict, prefix):
''' Old style model is stored with all names of parameters share common prefix 'module.' '''
logger.info('remove prefix \'{}\''.format(prefix))
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
def load_pretrain(model, pretrained_path):
logger.info('load pretrained model from {}'.format(pretrained_path))
if not torch.cuda.is_available():
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage)
else:
device = torch.cuda.current_device()
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
if "state_dict" in pretrained_dict.keys():
pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.')
else:
pretrained_dict = remove_prefix(pretrained_dict, 'module.')
try:
check_keys(model, pretrained_dict)
except:
logger.info('[Warning]: using pretrain as features. Adding "features." as prefix')
new_dict = {}
for k, v in pretrained_dict.items():
k = 'features.' + k
new_dict[k] = v
pretrained_dict = new_dict
check_keys(model, pretrained_dict)
model.load_state_dict(pretrained_dict, strict=False)
return model
def restore_from(model, optimizer, ckpt_path):
logger.info('restore from {}'.format(ckpt_path))
device = torch.cuda.current_device()
ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage.cuda(device))
epoch = ckpt['epoch']
best_acc = ckpt['best_acc']
arch = ckpt['arch']
ckpt_model_dict = remove_prefix(ckpt['state_dict'], 'module.')
check_keys(model, ckpt_model_dict)
model.load_state_dict(ckpt_model_dict, strict=False)
check_keys(optimizer, ckpt['optimizer'])
optimizer.load_state_dict(ckpt['optimizer'])
return model, optimizer, epoch, best_acc, arch
|