File size: 1,798 Bytes
d4b77ac 1cfd9ed d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from __future__ import division
from SiamMask.utils.anchors import Anchors
class TrackerConfig(object):
# These are the default hyper-params for SiamMask
penalty_k = 0.09
window_influence = 0.39
lr = 0.38
seg_thr = 0.3 # for mask
windowing = 'cosine' # to penalize large displacements [cosine/uniform]
# Params from the network architecture, have to be consistent with the training
exemplar_size = 127 # input z size
instance_size = 255 # input x size (search region)
total_stride = 8
out_size = 63 # for mask
base_size = 8
score_size = (instance_size-exemplar_size)//total_stride+1+base_size
context_amount = 0.5 # context amount for the exemplar
ratios = [0.33, 0.5, 1, 2, 3]
scales = [8, ]
anchor_num = len(ratios) * len(scales)
round_dight = 0
anchor = []
def update(self, newparam=None, anchors=None):
if newparam:
for key, value in newparam.items():
setattr(self, key, value)
if anchors is not None:
if isinstance(anchors, dict):
anchors = Anchors(anchors)
if isinstance(anchors, Anchors):
self.total_stride = anchors.stride
self.ratios = anchors.ratios
self.scales = anchors.scales
self.round_dight = anchors.round_dight
self.renew()
def renew(self):
self.score_size = (self.instance_size - self.exemplar_size) // self.total_stride + 1 + self.base_size
self.anchor_num = len(self.ratios) * len(self.scales)
|