File size: 17,108 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import os
import sys

import torch
import torch.nn as nn
import numpy as np


class AlignLoss(nn.Module):
    def __init__(self, reduction='mean'):
        super().__init__()
        self.loss_fn = nn.L1Loss(reduction=reduction)

    def forward(self, frames, masks, aligned_vs, aligned_rs):
        """

        :param frames: The original frames(GT)
        :param masks: Original masks
        :param aligned_vs: aligned visibility map from reference frame(List: B, C, T, H, W)
        :param aligned_rs: aligned reference frames(List: B, C, T, H, W)
        :return:
        """
        try:
            B, C, T, H, W = frames.shape
        except ValueError:
            frames = frames.unsqueeze(2)
            masks = masks.unsqueeze(2)
        B, C, T, H, W = frames.shape
        loss = 0
        for i in range(T):
            frame = frames[:, :, i]
            mask = masks[:, :, i]
            aligned_v = aligned_vs[i]
            aligned_r = aligned_rs[i]
            loss += self._singleFrameAlignLoss(frame, mask, aligned_v, aligned_r)
        return loss

    def _singleFrameAlignLoss(self, targetFrame, targetMask, aligned_v, aligned_r):
        """

        :param targetFrame: targetFrame to be aligned-> B, C, H, W
        :param targetMask: the mask of target frames
        :param aligned_v: aligned visibility map from reference frame
        :param aligned_r: aligned reference frame-> B, C, T, H, W
        :return:
        """
        targetVisibility = 1. - targetMask
        targetVisibility = targetVisibility.unsqueeze(2)
        targetFrame = targetFrame.unsqueeze(2)
        visibility_map = targetVisibility * aligned_v
        target_visibility = visibility_map * targetFrame
        reference_visibility = visibility_map * aligned_r
        loss = 0
        for i in range(aligned_r.shape[2]):
            loss += self.loss_fn(target_visibility[:, :, i], reference_visibility[:, :, i])
        return loss


class HoleVisibleLoss(nn.Module):
    def __init__(self, reduction='mean'):
        super().__init__()
        self.loss_fn = nn.L1Loss(reduction=reduction)

    def forward(self, outputs, masks, GTs, c_masks):
        try:
            B, C, T, H, W = outputs.shape
        except ValueError:
            outputs = outputs.unsqueeze(2)
            masks = masks.unsqueeze(2)
            GTs = GTs.unsqueeze(2)
            c_masks = c_masks.unsqueeze(2)
        B, C, T, H, W = outputs.shape
        loss = 0
        for i in range(T):
            loss += self._singleFrameHoleVisibleLoss(outputs[:, :, i], masks[:, :, i], c_masks[:, :, i], GTs[:, :, i])
        return loss

    def _singleFrameHoleVisibleLoss(self, targetFrame, targetMask, c_mask, GT):
        return self.loss_fn(targetMask * c_mask * targetFrame, targetMask * c_mask * GT)


class HoleInvisibleLoss(nn.Module):
    def __init__(self, reduction='mean'):
        super().__init__()
        self.loss_fn = nn.L1Loss(reduction=reduction)

    def forward(self, outputs, masks, GTs, c_masks):
        try:
            B, C, T, H, W = outputs.shape
        except ValueError:
            outputs = outputs.unsqueeze(2)
            masks = masks.unsqueeze(2)
            GTs = GTs.unsqueeze(2)
            c_masks = c_masks.unsqueeze(2)
        B, C, T, H, W = outputs.shape
        loss = 0
        for i in range(T):
            loss += self._singleFrameHoleInvisibleLoss(outputs[:, :, i], masks[:, :, i], c_masks[:, :, i], GTs[:, :, i])
        return loss

    def _singleFrameHoleInvisibleLoss(self, targetFrame, targetMask, c_mask, GT):
        return self.loss_fn(targetMask * (1. - c_mask) * targetFrame, targetMask * (1. - c_mask) * GT)


class NonHoleLoss(nn.Module):
    def __init__(self, reduction='mean'):
        super().__init__()
        self.loss_fn = nn.L1Loss(reduction=reduction)

    def forward(self, outputs, masks, GTs):
        try:
            B, C, T, H, W = outputs.shape
        except ValueError:
            outputs = outputs.unsqueeze(2)
            masks = masks.unsqueeze(2)
            GTs = GTs.unsqueeze(2)
        B, C, T, H, W = outputs.shape
        loss = 0
        for i in range(T):
            loss += self._singleNonHoleLoss(outputs[:, :, i], masks[:, :, i], GTs[:, :, i])
        return loss

    def _singleNonHoleLoss(self, targetFrame, targetMask, GT):
        return self.loss_fn((1. - targetMask) * targetFrame, (1. - targetMask) * GT)


class ReconLoss(nn.Module):
    def __init__(self, reduction='mean', masked=False):
        super().__init__()
        self.loss_fn = nn.L1Loss(reduction=reduction)
        self.masked = masked

    def forward(self, model_output, target, mask):
        outputs = model_output
        targets = target
        if self.masked:
            masks = mask
            return self.loss_fn(outputs * masks, targets * masks)  # L1 loss in masked region
        else:
            return self.loss_fn(outputs, targets)  # L1 loss in the whole region


class VGGLoss(nn.Module):
    def __init__(self, vgg):
        super().__init__()
        self.l1_loss = nn.L1Loss()
        self.vgg = vgg

    def vgg_loss(self, output, target):
        output_feature = self.vgg(output)
        target_feature = self.vgg(target)
        loss = (
                self.l1_loss(output_feature.relu2_2, target_feature.relu2_2)
                + self.l1_loss(output_feature.relu3_3, target_feature.relu3_3)
                + self.l1_loss(output_feature.relu4_3, target_feature.relu4_3)
        )
        return loss

    def forward(self, data_input, model_output):
        targets = data_input
        outputs = model_output
        mean_image_loss = self.vgg_loss(outputs, targets)
        return mean_image_loss


class StyleLoss(nn.Module):
    def __init__(self, vgg, original_channel_norm=True):
        super().__init__()
        self.l1_loss = nn.L1Loss()
        self.vgg = vgg
        self.original_channel_norm = original_channel_norm

    # From https://github.com/pytorch/tutorials/blob/master/advanced_source/neural_style_tutorial.py
    def gram_matrix(self, input):
        a, b, c, d = input.size()  # a=batch size(=1)
        # b=number of feature maps
        # (c,d)=dimensions of a f. map (N=c*d)

        features = input.view(a * b, c * d)  # resise F_XL into \hat F_XL

        G = torch.mm(features, features.t())  # compute the gram product

        # we 'normalize' the values of the gram matrix
        # by dividing by the number of element in each feature maps.
        return G.div(a * b * c * d)

    # Implement "Image Inpainting for Irregular Holes Using Partial Convolutions", Liu et al., 2018
    def style_loss(self, output, target):
        output_features = self.vgg(output)
        target_features = self.vgg(target)
        layers = ['relu2_2', 'relu3_3', 'relu4_3']  # n_channel: 128 (=2 ** 7), 256 (=2 ** 8), 512 (=2 ** 9)
        loss = 0
        for i, layer in enumerate(layers):
            output_feature = getattr(output_features, layer)
            target_feature = getattr(target_features, layer)
            B, C_P, H, W = output_feature.shape
            output_gram_matrix = self.gram_matrix(output_feature)
            target_gram_matrix = self.gram_matrix(target_feature)
            if self.original_channel_norm:
                C_P_square_divider = 2 ** (i + 1)  # original design (avoid too small loss)
            else:
                C_P_square_divider = C_P ** 2
                assert C_P == 128 * 2 ** i
            loss += self.l1_loss(output_gram_matrix, target_gram_matrix) / C_P_square_divider
        return loss

    def forward(self, data_input, model_output):
        targets = data_input
        outputs = model_output
        mean_image_loss = self.style_loss(outputs, targets)
        return mean_image_loss


class L1LossMaskedMean(nn.Module):
    def __init__(self):
        super().__init__()
        self.l1 = nn.L1Loss(reduction='sum')

    def forward(self, x, y, mask):
        masked = 1 - mask  # 默认missing region的mask值为0,原有区域为1
        l1_sum = self.l1(x * masked, y * masked)
        return l1_sum / torch.sum(masked)


class L2LossMaskedMean(nn.Module):
    def __init__(self, reduction='sum'):
        super().__init__()
        self.l2 = nn.MSELoss(reduction=reduction)

    def forward(self, x, y, mask):
        masked = 1 - mask
        l2_sum = self.l2(x * masked, y * masked)
        return l2_sum / torch.sum(masked)


class ImcompleteVideoReconLoss(nn.Module):
    def __init__(self):
        super().__init__()
        self.loss_fn = L1LossMaskedMean()

    def forward(self, data_input, model_output):
        imcomplete_video = model_output['imcomplete_video']
        targets = data_input['targets']
        down_sampled_targets = nn.functional.interpolate(
            targets.transpose(1, 2), scale_factor=[1, 0.5, 0.5])

        masks = data_input['masks']
        down_sampled_masks = nn.functional.interpolate(
            masks.transpose(1, 2), scale_factor=[1, 0.5, 0.5])
        return self.loss_fn(
            imcomplete_video, down_sampled_targets,
            down_sampled_masks
        )


class CompleteFramesReconLoss(nn.Module):
    def __init__(self):
        super().__init__()
        self.loss_fn = L1LossMaskedMean()

    def forward(self, data_input, model_output):
        outputs = model_output['outputs']
        targets = data_input['targets']
        masks = data_input['masks']
        return self.loss_fn(outputs, targets, masks)


class AdversarialLoss(nn.Module):
    r"""
    Adversarial loss
    https://arxiv.org/abs/1711.10337
    """

    def __init__(self, type='nsgan', target_real_label=1.0, target_fake_label=0.0):
        r"""
        type = nsgan | lsgan | hinge
        """
        super(AdversarialLoss, self).__init__()
        self.type = type
        self.register_buffer('real_label', torch.tensor(target_real_label))
        self.register_buffer('fake_label', torch.tensor(target_fake_label))

        if type == 'nsgan':
            self.criterion = nn.BCELoss()
        elif type == 'lsgan':
            self.criterion = nn.MSELoss()
        elif type == 'hinge':
            self.criterion = nn.ReLU()

    def __call__(self, outputs, is_real, is_disc=None):
        if self.type == 'hinge':
            if is_disc:
                if is_real:
                    outputs = -outputs
                return self.criterion(1 + outputs).mean()
            else:
                return (-outputs).mean()
        else:
            labels = (self.real_label if is_real else self.fake_label).expand_as(
                outputs)
            loss = self.criterion(outputs, labels)
            return loss


# # From https://github.com/phoenix104104/fast_blind_video_consistency
# class TemporalWarpingLoss(nn.Module):
#     def __init__(self, opts, flownet_checkpoint_path=None, alpha=50):
#         super().__init__()
#         self.loss_fn = L1LossMaskedMean()
#         self.alpha = alpha
#         self.opts = opts
#
#         assert flownet_checkpoint_path is not None, "Flownet2 pretrained models must be provided"
#
#         self.flownet_checkpoint_path = flownet_checkpoint_path
#         raise NotImplementedError
#
#     def get_flownet_checkpoint_path(self):
#         return self.flownet_checkpoint_path
#
#     def _flownetwrapper(self):
#         Flownet = FlowNet2(self.opts, requires_grad=False)
#         Flownet2_ckpt = torch.load(self.flownet_checkpoint_path)
#         Flownet.load_state_dict(Flownet2_ckpt['state_dict'])
#         Flownet.to(device)
#         Flownet.exal()
#         return Flownet
#
#     def _setup(self):
#         self.flownet = self._flownetwrapper()
#
#     def _get_non_occlusuib_mask(self, targets, warped_targets):
#         non_occlusion_masks = torch.exp(
#             -self.alpha * torch.sum(targets[:, 1:] - warped_targets, dim=2).pow(2)
#         ).unsqueeze(2)
#         return non_occlusion_masks
#
#     def _get_loss(self, outputs, warped_outputs, non_occlusion_masks, masks):
#         return self.loss_fn(
#             outputs[:, 1:] * non_occlusion_masks,
#             warped_outputs * non_occlusion_masks,
#             masks[:, 1:]
#         )
#
#     def forward(self, data_input, model_output):
#         if self.flownet is None:
#             self._setup()
#
#         targets = data_input['targets'].to(device)
#         outputs = model_output['outputs'].to(device)
#         flows = self.flownet.infer_video(targets).to(device)
#
#         from utils.flow_utils import warp_optical_flow
#         warped_targets = warp_optical_flow(targets[:, :-1], -flows).detach()
#         warped_outputs = warp_optical_flow(outputs[:, :-1], -flows).detach()
#         non_occlusion_masks = self._get_non_occlusion_mask(targets, warped_targets)
#
#         # model_output is passed by name and dictionary is mutable
#         # These values are sent to trainer for visualization
#         model_output['warped_outputs'] = warped_outputs[0]
#         model_output['warped_targets'] = warped_targets[0]
#         model_output['non_occlusion_masks'] = non_occlusion_masks[0]
#         from utils.flow_utils import flow_to_image
#         flow_imgs = []
#         for flow in flows[0]:
#             flow_img = flow_to_image(flow.cpu().permute(1, 2, 0).detach().numpy()).transpose(2, 0, 1)
#             flow_imgs.append(torch.Tensor(flow_img))
#         model_output['flow_imgs'] = flow_imgs
#
#         masks = data_input['masks'].to(device)
#         return self._get_loss(outputs, warped_outputs, non_occlusion_masks, masks)
#
#
# class TemporalWarpingError(TemporalWarpingLoss):
#     def __init__(self, flownet_checkpoint_path, alpha=50):
#         super().__init__(flownet_checkpoint_path, alpha)
#         self.loss_fn = L2LossMaskedMean(reduction='none')
#
#     def _get_loss(self, outputs, warped_outputs, non_occlusion_masks, masks):
#         # See https://arxiv.org/pdf/1808.00449.pdf 4.3
#         # The sum of non_occlusion_masks is different for each video,
#         # So the batch dim is kept
#         loss = self.loss_fn(
#             outputs[:, 1:] * non_occlusion_masks,
#             warped_outputs * non_occlusion_masks,
#             masks[:, 1:]
#         ).sum(1).sum(1).sum(1).sum(1)
#
#         loss = loss / non_occlusion_masks.sum(1).sum(1).sum(1).sum(1)
#         return loss.sum()


class ValidLoss(nn.Module):
    def __init__(self):
        super(ValidLoss, self).__init__()
        self.loss_fn = nn.L1Loss(reduction='mean')

    def forward(self, model_output, target, mk):
        outputs = model_output
        targets = target
        return self.loss_fn(outputs * (1 - mk), targets * (1 - mk))  # L1 loss in masked region



class TVLoss(nn.Module):
    def __init__(self):
        super(TVLoss, self).__init__()

    def forward(self, mask_input, model_output):
        # View 3D data as 2D
        outputs = model_output

        if len(mask_input.shape) == 4:
            mask_input = mask_input.unsqueeze(2)
        if len(outputs.shape) == 4:
            outputs = outputs.unsqueeze(2)

        outputs = outputs.permute((0, 2, 1, 3, 4)).contiguous()
        masks = mask_input.permute((0, 2, 1, 3, 4)).contiguous()

        B, L, C, H, W = outputs.shape
        x = outputs.view([B * L, C, H, W])

        masks = masks.view([B * L, -1])
        mask_areas = masks.sum(dim=1)

        h_x = x.size()[2]
        w_x = x.size()[3]
        h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum(1).sum(1).sum(1)  # 差分是为了求梯度,本质上还是梯度平方和
        w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum(1).sum(1).sum(1)
        return ((h_tv + w_tv) / mask_areas).mean()


# for debug
def show_images(image, name):
    import cv2
    import numpy as np
    image = np.array(image)
    image[image > 0.5] = 255.
    image = image.transpose((1, 2, 0))
    cv2.imwrite(name, image)


if __name__ == '__main__':
    # test align loss,
    targetFrame = torch.ones(1, 3, 32, 32)
    GT = torch.ones(1, 3, 32, 32)
    GT += 1
    mask = torch.zeros(1, 1, 32, 32)
    mask[:, :, 8:24, 8:24] = 1.

    # referenceFrames = torch.ones(1, 3, 4, 32, 32)
    # referenceMasks = torch.zeros(1, 1, 4, 32, 32)
    # referenceMasks[:, :, 0, 4:12, 4:12] = 1.
    # referenceFrames[:, :, 0, 4:12, 4:12] = 2.
    # referenceMasks[:, :, 1, 4:12, 20:28] = 1.
    # referenceFrames[:, :, 1, 4:12, 20:28] = 2.
    # referenceMasks[:, :, 2, 20:28, 4:12] = 1.
    # referenceFrames[:, :, 2, 20:28, 4:12] = 2.
    # referenceMasks[:, :, 3, 20:28, 20:28] = 1.
    # referenceFrames[:, :, 3, 20:28, 20:28] = 2.
    #
    # aligned_v = referenceMasks
    # aligned_v, referenceFrames = [aligned_v], [referenceFrames]
    #
    # result = AlignLoss()(targetFrame, mask, aligned_v, referenceFrames)
    # print(result)

    c_mask = torch.zeros(1, 1, 32, 32)
    c_mask[:, :, 8:16, 16:24] = 1.
    result1 = HoleVisibleLoss()(targetFrame, mask, GT, c_mask)
    result2 = HoleInvisibleLoss()(targetFrame, mask, GT, c_mask)
    result3 = NonHoleLoss()(targetFrame, mask, GT)
    print('vis: {}, invis: {}, gt: {}'.format(result1, result2, result3))