File size: 18,476 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
__author__ = 'tylin'
__version__ = '2.0'
# Interface for accessing the Microsoft COCO dataset.

# Microsoft COCO is a large image dataset designed for object detection,
# segmentation, and caption generation. pycocotools is a Python API that
# assists in loading, parsing and visualizing the annotations in COCO.
# Please visit http://mscoco.org/ for more information on COCO, including
# for the data, paper, and tutorials. The exact format of the annotations
# is also described on the COCO website. For example usage of the pycocotools
# please see pycocotools_demo.ipynb. In addition to this API, please download both
# the COCO images and annotations in order to run the demo.

# An alternative to using the API is to load the annotations directly
# into Python dictionary
# Using the API provides additional utility functions. Note that this API
# supports both *instance* and *caption* annotations. In the case of
# captions not all functions are defined (e.g. categories are undefined).

# The following API functions are defined:
#  COCO       - COCO api class that loads COCO annotation file and prepare data structures.
#  decodeMask - Decode binary mask M encoded via run-length encoding.
#  encodeMask - Encode binary mask M using run-length encoding.
#  getAnnIds  - Get ann ids that satisfy given filter conditions.
#  getCatIds  - Get cat ids that satisfy given filter conditions.
#  getImgIds  - Get img ids that satisfy given filter conditions.
#  loadAnns   - Load anns with the specified ids.
#  loadCats   - Load cats with the specified ids.
#  loadImgs   - Load imgs with the specified ids.
#  annToMask  - Convert segmentation in an annotation to binary mask.
#  showAnns   - Display the specified annotations.
#  loadRes    - Load algorithm results and create API for accessing them.
#  download   - Download COCO images from mscoco.org server.
# Throughout the API "ann"=annotation, "cat"=category, and "img"=image.
# Help on each functions can be accessed by: "help COCO>function".

# See also COCO>decodeMask,
# COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds,
# COCO>getImgIds, COCO>loadAnns, COCO>loadCats,
# COCO>loadImgs, COCO>annToMask, COCO>showAnns

# Microsoft COCO Toolbox.      version 2.0
# Data, paper, and tutorials available at:  http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2014.
# Licensed under the Simplified BSD License [see bsd.txt]

import json
import time

try:
    import matplotlib.pyplot as plt
    from matplotlib.collections import PatchCollection
    from matplotlib.patches import Polygon
except Exception as e:
    print(e)

import numpy as np
import copy
import itertools
from . import mask as maskUtils
import os
from collections import defaultdict
import sys
PYTHON_VERSION = sys.version_info[0]
if PYTHON_VERSION == 2:
    from urllib import urlretrieve
elif PYTHON_VERSION == 3:
    from urllib.request import urlretrieve


def _isArrayLike(obj):
    return hasattr(obj, '__iter__') and hasattr(obj, '__len__')


class COCO:
    def __init__(self, annotation_file=None):
        """
        Constructor of Microsoft COCO helper class for reading and visualizing annotations.
        :param annotation_file (str): location of annotation file
        :param image_folder (str): location to the folder that hosts images.
        :return:
        """
        # load dataset
        self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict()
        self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list)
        if not annotation_file == None:
            print('loading annotations into memory...')
            tic = time.time()
            dataset = json.load(open(annotation_file, 'r'))
            assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset))
            print('Done (t={:0.2f}s)'.format(time.time()- tic))
            self.dataset = dataset
            self.createIndex()

    def createIndex(self):
        # create index
        print('creating index...')
        anns, cats, imgs = {}, {}, {}
        imgToAnns,catToImgs = defaultdict(list),defaultdict(list)
        if 'annotations' in self.dataset:
            for ann in self.dataset['annotations']:
                imgToAnns[ann['image_id']].append(ann)
                anns[ann['id']] = ann

        if 'images' in self.dataset:
            for img in self.dataset['images']:
                imgs[img['id']] = img

        if 'categories' in self.dataset:
            for cat in self.dataset['categories']:
                cats[cat['id']] = cat

        if 'annotations' in self.dataset and 'categories' in self.dataset:
            for ann in self.dataset['annotations']:
                catToImgs[ann['category_id']].append(ann['image_id'])

        print('index created!')

        # create class members
        self.anns = anns
        self.imgToAnns = imgToAnns
        self.catToImgs = catToImgs
        self.imgs = imgs
        self.cats = cats

    def info(self):
        """
        Print information about the annotation file.
        :return:
        """
        for key, value in self.dataset['info'].items():
            print('{}: {}'.format(key, value))

    def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None):
        """
        Get ann ids that satisfy given filter conditions. default skips that filter
        :param imgIds  (int array)     : get anns for given imgs
               catIds  (int array)     : get anns for given cats
               areaRng (float array)   : get anns for given area range (e.g. [0 inf])
               iscrowd (boolean)       : get anns for given crowd label (False or True)
        :return: ids (int array)       : integer array of ann ids
        """
        imgIds = imgIds if _isArrayLike(imgIds) else [imgIds]
        catIds = catIds if _isArrayLike(catIds) else [catIds]

        if len(imgIds) == len(catIds) == len(areaRng) == 0:
            anns = self.dataset['annotations']
        else:
            if not len(imgIds) == 0:
                lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns]
                anns = list(itertools.chain.from_iterable(lists))
            else:
                anns = self.dataset['annotations']
            anns = anns if len(catIds)  == 0 else [ann for ann in anns if ann['category_id'] in catIds]
            anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]]
        if not iscrowd == None:
            ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd]
        else:
            ids = [ann['id'] for ann in anns]
        return ids

    def getCatIds(self, catNms=[], supNms=[], catIds=[]):
        """
        filtering parameters. default skips that filter.
        :param catNms (str array)  : get cats for given cat names
        :param supNms (str array)  : get cats for given supercategory names
        :param catIds (int array)  : get cats for given cat ids
        :return: ids (int array)   : integer array of cat ids
        """
        catNms = catNms if _isArrayLike(catNms) else [catNms]
        supNms = supNms if _isArrayLike(supNms) else [supNms]
        catIds = catIds if _isArrayLike(catIds) else [catIds]

        if len(catNms) == len(supNms) == len(catIds) == 0:
            cats = self.dataset['categories']
        else:
            cats = self.dataset['categories']
            cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name']          in catNms]
            cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms]
            cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id']            in catIds]
        ids = [cat['id'] for cat in cats]
        return ids

    def getImgIds(self, imgIds=[], catIds=[]):
        '''
        Get img ids that satisfy given filter conditions.
        :param imgIds (int array) : get imgs for given ids
        :param catIds (int array) : get imgs with all given cats
        :return: ids (int array)  : integer array of img ids
        '''
        imgIds = imgIds if _isArrayLike(imgIds) else [imgIds]
        catIds = catIds if _isArrayLike(catIds) else [catIds]

        if len(imgIds) == len(catIds) == 0:
            ids = self.imgs.keys()
        else:
            ids = set(imgIds)
            for i, catId in enumerate(catIds):
                if i == 0 and len(ids) == 0:
                    ids = set(self.catToImgs[catId])
                else:
                    ids &= set(self.catToImgs[catId])
        return list(ids)

    def loadAnns(self, ids=[]):
        """
        Load anns with the specified ids.
        :param ids (int array)       : integer ids specifying anns
        :return: anns (object array) : loaded ann objects
        """
        if _isArrayLike(ids):
            return [self.anns[id] for id in ids]
        elif type(ids) == int:
            return [self.anns[ids]]

    def loadCats(self, ids=[]):
        """
        Load cats with the specified ids.
        :param ids (int array)       : integer ids specifying cats
        :return: cats (object array) : loaded cat objects
        """
        if _isArrayLike(ids):
            return [self.cats[id] for id in ids]
        elif type(ids) == int:
            return [self.cats[ids]]

    def loadImgs(self, ids=[]):
        """
        Load anns with the specified ids.
        :param ids (int array)       : integer ids specifying img
        :return: imgs (object array) : loaded img objects
        """
        if _isArrayLike(ids):
            return [self.imgs[id] for id in ids]
        elif type(ids) == int:
            return [self.imgs[ids]]

    def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0] or 'keypoints' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        else:
            raise Exception('datasetType not supported')
        if datasetType == 'instances':
            ax = plt.gca()
            ax.set_autoscale_on(False)
            polygons = []
            color = []
            for ann in anns:
                c = (np.random.random((1, 3))*0.6+0.4).tolist()[0]
                if 'segmentation' in ann:
                    if type(ann['segmentation']) == list:
                        # polygon
                        for seg in ann['segmentation']:
                            poly = np.array(seg).reshape((int(len(seg)/2), 2))
                            polygons.append(Polygon(poly))
                            color.append(c)
                    else:
                        # mask
                        t = self.imgs[ann['image_id']]
                        if type(ann['segmentation']['counts']) == list:
                            rle = maskUtils.frPyObjects([ann['segmentation']], t['height'], t['width'])
                        else:
                            rle = [ann['segmentation']]
                        m = maskUtils.decode(rle)
                        img = np.ones( (m.shape[0], m.shape[1], 3) )
                        if ann['iscrowd'] == 1:
                            color_mask = np.array([2.0,166.0,101.0])/255
                        if ann['iscrowd'] == 0:
                            color_mask = np.random.random((1, 3)).tolist()[0]
                        for i in range(3):
                            img[:,:,i] = color_mask[i]
                        ax.imshow(np.dstack( (img, m*0.5) ))
                if 'keypoints' in ann and type(ann['keypoints']) == list:
                    # turn skeleton into zero-based index
                    sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1
                    kp = np.array(ann['keypoints'])
                    x = kp[0::3]
                    y = kp[1::3]
                    v = kp[2::3]
                    for sk in sks:
                        if np.all(v[sk]>0):
                            plt.plot(x[sk],y[sk], linewidth=3, color=c)
                    plt.plot(x[v>0], y[v>0],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2)
                    plt.plot(x[v>1], y[v>1],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2)
            p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4)
            ax.add_collection(p)
            p = PatchCollection(polygons, facecolor='none', edgecolors=color, linewidths=2)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print(ann['caption'])

    def loadRes(self, resFile):
        """
        Load result file and return a result api object.
        :param   resFile (str)     : file name of result file
        :return: res (obj)         : result api object
        """
        res = COCO()
        res.dataset['images'] = [img for img in self.dataset['images']]

        print('Loading and preparing results...')
        tic = time.time()
        #if type(resFile) == str or type(resFile) == unicode:
        if type(resFile) == str:
            anns = json.load(open(resFile))
        elif type(resFile) == np.ndarray:
            anns = self.loadNumpyAnnotations(resFile)
        else:
            anns = resFile
        assert type(anns) == list, 'results in not an array of objects'
        annsImgIds = [ann['image_id'] for ann in anns]
        assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \
               'Results do not correspond to current coco set'
        if 'caption' in anns[0]:
            imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns])
            res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds]
            for id, ann in enumerate(anns):
                ann['id'] = id+1
        elif 'bbox' in anns[0] and not anns[0]['bbox'] == []:
            res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
            for id, ann in enumerate(anns):
                bb = ann['bbox']
                x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]]
                if not 'segmentation' in ann:
                    ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
                ann['area'] = bb[2]*bb[3]
                ann['id'] = id+1
                ann['iscrowd'] = 0
        elif 'segmentation' in anns[0]:
            res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
            for id, ann in enumerate(anns):
                # now only support compressed RLE format as segmentation results
                ann['area'] = maskUtils.area(ann['segmentation'])
                if not 'bbox' in ann:
                    ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
                ann['id'] = id+1
                ann['iscrowd'] = 0
        elif 'keypoints' in anns[0]:
            res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
            for id, ann in enumerate(anns):
                s = ann['keypoints']
                x = s[0::3]
                y = s[1::3]
                x0,x1,y0,y1 = np.min(x), np.max(x), np.min(y), np.max(y)
                ann['area'] = (x1-x0)*(y1-y0)
                ann['id'] = id + 1
                ann['bbox'] = [x0,y0,x1-x0,y1-y0]
        print('DONE (t={:0.2f}s)'.format(time.time()- tic))

        res.dataset['annotations'] = anns
        res.createIndex()
        return res

    def download(self, tarDir = None, imgIds = [] ):
        '''
        Download COCO images from mscoco.org server.
        :param tarDir (str): COCO results directory name
               imgIds (list): images to be downloaded
        :return:
        '''
        if tarDir is None:
            print('Please specify target directory')
            return -1
        if len(imgIds) == 0:
            imgs = self.imgs.values()
        else:
            imgs = self.loadImgs(imgIds)
        N = len(imgs)
        if not os.path.exists(tarDir):
            os.makedirs(tarDir)
        for i, img in enumerate(imgs):
            tic = time.time()
            fname = os.path.join(tarDir, img['file_name'])
            if not os.path.exists(fname):
                urlretrieve(img['coco_url'], fname)
            print('downloaded {}/{} images (t={:0.1f}s)'.format(i, N, time.time()- tic))

    def loadNumpyAnnotations(self, data):
        """
        Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class}
        :param  data (numpy.ndarray)
        :return: annotations (python nested list)
        """
        print('Converting ndarray to lists...')
        assert(type(data) == np.ndarray)
        print(data.shape)
        assert(data.shape[1] == 7)
        N = data.shape[0]
        ann = []
        for i in range(N):
            if i % 1000000 == 0:
                print('{}/{}'.format(i,N))
            ann += [{
                'image_id'  : int(data[i, 0]),
                'bbox'  : [ data[i, 1], data[i, 2], data[i, 3], data[i, 4] ],
                'score' : data[i, 5],
                'category_id': int(data[i, 6]),
                }]
        return ann

    def annToRLE(self, ann):
        """
        Convert annotation which can be polygons, uncompressed RLE to RLE.
        :return: binary mask (numpy 2D array)
        """
        t = self.imgs[ann['image_id']]
        h, w = t['height'], t['width']
        segm = ann['segmentation']
        if type(segm) == list:
            # polygon -- a single object might consist of multiple parts
            # we merge all parts into one mask rle code
            rles = maskUtils.frPyObjects(segm, h, w)
            rle = maskUtils.merge(rles)
        elif type(segm['counts']) == list:
            # uncompressed RLE
            rle = maskUtils.frPyObjects(segm, h, w)
        else:
            # rle
            rle = ann['segmentation']
        return rle

    def annToMask(self, ann):
        """
        Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask.
        :return: binary mask (numpy 2D array)
        """
        rle = self.annToRLE(ann)
        m = maskUtils.decode(rle)
        return m