File size: 6,076 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from os.path import join, isdir
from os import listdir, mkdir, makedirs
import cv2
import numpy as np
import glob
import xml.etree.ElementTree as ET
from concurrent import futures
import sys
import time

VID_base_path = './ILSVRC2015'
ann_base_path = join(VID_base_path, 'Annotations/VID/train/')
sub_sets= sorted({'ILSVRC2015_VID_train_0000', 'ILSVRC2015_VID_train_0001', 'ILSVRC2015_VID_train_0002', 'ILSVRC2015_VID_train_0003', 'val'})
# Print iterations progress (thanks StackOverflow)
def printProgress(iteration, total, prefix='', suffix='', decimals=1, barLength=100):
    """
    Call in a loop to create terminal progress bar
    @params:
        iteration   - Required  : current iteration (Int)
        total       - Required  : total iterations (Int)
        prefix      - Optional  : prefix string (Str)
        suffix      - Optional  : suffix string (Str)
        decimals    - Optional  : positive number of decimals in percent complete (Int)
        barLength   - Optional  : character length of bar (Int)
    """
    formatStr       = "{0:." + str(decimals) + "f}"
    percents        = formatStr.format(100 * (iteration / float(total)))
    filledLength    = int(round(barLength * iteration / float(total)))
    bar             = '' * filledLength + '-' * (barLength - filledLength)
    sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix)),
    if iteration == total:
        sys.stdout.write('\x1b[2K\r')
    sys.stdout.flush()


def crop_hwc(image, bbox, out_sz, padding=(0, 0, 0)):
    a = (out_sz-1) / (bbox[2]-bbox[0])
    b = (out_sz-1) / (bbox[3]-bbox[1])
    c = -a * bbox[0]
    d = -b * bbox[1]
    mapping = np.array([[a, 0, c],
                        [0, b, d]]).astype(np.float)
    crop = cv2.warpAffine(image, mapping, (out_sz, out_sz), borderMode=cv2.BORDER_CONSTANT, borderValue=padding)
    return crop


def pos_s_2_bbox(pos, s):
    return [pos[0]-s/2, pos[1]-s/2, pos[0]+s/2, pos[1]+s/2]


def crop_like_SiamFC(image, bbox, context_amount=0.5, exemplar_size=127, instanc_size=255, padding=(0, 0, 0)):
    target_pos = [(bbox[2]+bbox[0])/2., (bbox[3]+bbox[1])/2.]
    target_size = [bbox[2]-bbox[0], bbox[3]-bbox[1]]
    wc_z = target_size[1] + context_amount * sum(target_size)
    hc_z = target_size[0] + context_amount * sum(target_size)
    s_z = np.sqrt(wc_z * hc_z)
    scale_z = exemplar_size / s_z
    d_search = (instanc_size - exemplar_size) / 2
    pad = d_search / scale_z
    s_x = s_z + 2 * pad

    z = crop_hwc(image, pos_s_2_bbox(target_pos, s_z), exemplar_size, padding)
    x = crop_hwc(image, pos_s_2_bbox(target_pos, s_x), instanc_size, padding)
    return z, x


def crop_like_SiamFCx(image, bbox, context_amount=0.5, exemplar_size=127, instanc_size=255, padding=(0, 0, 0)):
    target_pos = [(bbox[2]+bbox[0])/2., (bbox[3]+bbox[1])/2.]
    target_size = [bbox[2]-bbox[0], bbox[3]-bbox[1]]
    wc_z = target_size[1] + context_amount * sum(target_size)
    hc_z = target_size[0] + context_amount * sum(target_size)
    s_z = np.sqrt(wc_z * hc_z)
    scale_z = exemplar_size / s_z
    d_search = (instanc_size - exemplar_size) / 2
    pad = d_search / scale_z
    s_x = s_z + 2 * pad

    x = crop_hwc(image, pos_s_2_bbox(target_pos, s_x), instanc_size, padding)
    return x


def crop_video(sub_set, video, crop_path, instanc_size):
    video_crop_base_path = join(crop_path, sub_set, video)
    if not isdir(video_crop_base_path): makedirs(video_crop_base_path)

    sub_set_base_path = join(ann_base_path, sub_set)
    xmls = sorted(glob.glob(join(sub_set_base_path, video, '*.xml')))
    for xml in xmls:
        xmltree = ET.parse(xml)
        # size = xmltree.findall('size')[0]
        # frame_sz = [int(it.text) for it in size]
        objects = xmltree.findall('object')
        objs = []
        filename = xmltree.findall('filename')[0].text

        im = cv2.imread(xml.replace('xml', 'JPEG').replace('Annotations', 'Data'))
        avg_chans = np.mean(im, axis=(0, 1))
        for object_iter in objects:
            trackid = int(object_iter.find('trackid').text)
            # name = (object_iter.find('name')).text
            bndbox = object_iter.find('bndbox')
            # occluded = int(object_iter.find('occluded').text)

            bbox = [int(bndbox.find('xmin').text), int(bndbox.find('ymin').text),
                    int(bndbox.find('xmax').text), int(bndbox.find('ymax').text)]
            # z, x = crop_like_SiamFC(im, bbox, instanc_size=instanc_size, padding=avg_chans)
            # cv2.imwrite(join(video_crop_base_path, '{:06d}.{:02d}.z.jpg'.format(int(filename), trackid)), z)
            # cv2.imwrite(join(video_crop_base_path, '{:06d}.{:02d}.x.jpg'.format(int(filename), trackid)), x)

            x = crop_like_SiamFCx(im, bbox, instanc_size=instanc_size, padding=avg_chans)
            cv2.imwrite(join(video_crop_base_path, '{:06d}.{:02d}.x.jpg'.format(int(filename), trackid)), x)


def main(instanc_size=511, num_threads=24):
    crop_path = './crop{:d}'.format(instanc_size)
    if not isdir(crop_path): mkdir(crop_path)

    for sub_set in sub_sets:
        sub_set_base_path = join(ann_base_path, sub_set)
        videos = sorted(listdir(sub_set_base_path))
        n_videos = len(videos)
        with futures.ProcessPoolExecutor(max_workers=num_threads) as executor:
            fs = [executor.submit(crop_video, sub_set, video, crop_path, instanc_size) for video in videos]
            for i, f in enumerate(futures.as_completed(fs)):
                # Write progress to error so that it can be seen
                printProgress(i, n_videos, prefix=sub_set, suffix='Done ', barLength=40)


if __name__ == '__main__':
    since = time.time()
    main(int(sys.argv[1]), int(sys.argv[2]))
    time_elapsed = time.time() - since
    print('Total complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))