Spaces:
Sleeping
Sleeping
File size: 7,280 Bytes
d4b77ac 427d7b1 d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from SiamMask.utils.anchors import Anchors
class SiamMask(nn.Module):
def __init__(self, anchors=None, o_sz=63, g_sz=127):
super(SiamMask, self).__init__()
self.anchors = anchors # anchor_cfg
self.anchor_num = len(self.anchors["ratios"]) * len(self.anchors["scales"])
self.anchor = Anchors(anchors)
self.features = None
self.rpn_model = None
self.mask_model = None
self.o_sz = o_sz
self.g_sz = g_sz
self.upSample = nn.UpsamplingBilinear2d(size=[g_sz, g_sz])
self.all_anchors = None
def set_all_anchors(self, image_center, size):
# cx,cy,w,h
if not self.anchor.generate_all_anchors(image_center, size):
return
all_anchors = self.anchor.all_anchors[1] # cx, cy, w, h
self.all_anchors = torch.from_numpy(all_anchors).float().cuda()
self.all_anchors = [self.all_anchors[i] for i in range(4)]
def feature_extractor(self, x):
return self.features(x)
def rpn(self, template, search):
pred_cls, pred_loc = self.rpn_model(template, search)
return pred_cls, pred_loc
def mask(self, template, search):
pred_mask = self.mask_model(template, search)
return pred_mask
def _add_rpn_loss(self, label_cls, label_loc, lable_loc_weight, label_mask, label_mask_weight,
rpn_pred_cls, rpn_pred_loc, rpn_pred_mask):
rpn_loss_cls = select_cross_entropy_loss(rpn_pred_cls, label_cls)
rpn_loss_loc = weight_l1_loss(rpn_pred_loc, label_loc, lable_loc_weight)
rpn_loss_mask, iou_m, iou_5, iou_7 = select_mask_logistic_loss(rpn_pred_mask, label_mask, label_mask_weight)
return rpn_loss_cls, rpn_loss_loc, rpn_loss_mask, iou_m, iou_5, iou_7
def run(self, template, search, softmax=False):
"""
run network
"""
template_feature = self.feature_extractor(template)
search_feature = self.feature_extractor(search)
rpn_pred_cls, rpn_pred_loc = self.rpn(template_feature, search_feature)
rpn_pred_mask = self.mask(template_feature, search_feature) # (b, 63*63, w, h)
if softmax:
rpn_pred_cls = self.softmax(rpn_pred_cls)
return rpn_pred_cls, rpn_pred_loc, rpn_pred_mask, template_feature, search_feature
def softmax(self, cls):
b, a2, h, w = cls.size()
cls = cls.view(b, 2, a2//2, h, w)
cls = cls.permute(0, 2, 3, 4, 1).contiguous()
cls = F.log_softmax(cls, dim=4)
return cls
def forward(self, input):
"""
:param input: dict of input with keys of:
'template': [b, 3, h1, w1], input template image.
'search': [b, 3, h2, w2], input search image.
'label_cls':[b, max_num_gts, 5] or None(self.training==False),
each gt contains x1,y1,x2,y2,class.
:return: dict of loss, predict, accuracy
"""
template = input['template']
search = input['search']
if self.training:
label_cls = input['label_cls']
label_loc = input['label_loc']
lable_loc_weight = input['label_loc_weight']
label_mask = input['label_mask']
label_mask_weight = input['label_mask_weight']
rpn_pred_cls, rpn_pred_loc, rpn_pred_mask, template_feature, search_feature = \
self.run(template, search, softmax=self.training)
outputs = dict()
outputs['predict'] = [rpn_pred_loc, rpn_pred_cls, rpn_pred_mask, template_feature, search_feature]
if self.training:
rpn_loss_cls, rpn_loss_loc, rpn_loss_mask, iou_acc_mean, iou_acc_5, iou_acc_7 = \
self._add_rpn_loss(label_cls, label_loc, lable_loc_weight, label_mask, label_mask_weight,
rpn_pred_cls, rpn_pred_loc, rpn_pred_mask)
outputs['losses'] = [rpn_loss_cls, rpn_loss_loc, rpn_loss_mask]
outputs['accuracy'] = [iou_acc_mean, iou_acc_5, iou_acc_7]
return outputs
def template(self, z):
self.zf = self.feature_extractor(z)
cls_kernel, loc_kernel = self.rpn_model.template(self.zf)
return cls_kernel, loc_kernel
def track(self, x, cls_kernel=None, loc_kernel=None, softmax=False):
xf = self.feature_extractor(x)
rpn_pred_cls, rpn_pred_loc = self.rpn_model.track(xf, cls_kernel, loc_kernel)
if softmax:
rpn_pred_cls = self.softmax(rpn_pred_cls)
return rpn_pred_cls, rpn_pred_loc
def get_cls_loss(pred, label, select):
if select.nelement() == 0: return pred.sum()*0.
pred = torch.index_select(pred, 0, select)
label = torch.index_select(label, 0, select)
return F.nll_loss(pred, label)
def select_cross_entropy_loss(pred, label):
pred = pred.view(-1, 2)
label = label.view(-1)
pos = Variable(label.data.eq(1).nonzero().squeeze()).cuda()
neg = Variable(label.data.eq(0).nonzero().squeeze()).cuda()
loss_pos = get_cls_loss(pred, label, pos)
loss_neg = get_cls_loss(pred, label, neg)
return loss_pos * 0.5 + loss_neg * 0.5
def weight_l1_loss(pred_loc, label_loc, loss_weight):
"""
:param pred_loc: [b, 4k, h, w]
:param label_loc: [b, 4k, h, w]
:param loss_weight: [b, k, h, w]
:return: loc loss value
"""
b, _, sh, sw = pred_loc.size()
pred_loc = pred_loc.view(b, 4, -1, sh, sw)
diff = (pred_loc - label_loc).abs()
diff = diff.sum(dim=1).view(b, -1, sh, sw)
loss = diff * loss_weight
return loss.sum().div(b)
def select_mask_logistic_loss(p_m, mask, weight, o_sz=63, g_sz=127):
weight = weight.view(-1)
pos = Variable(weight.data.eq(1).nonzero().squeeze())
if pos.nelement() == 0: return p_m.sum() * 0, p_m.sum() * 0, p_m.sum() * 0, p_m.sum() * 0
p_m = p_m.permute(0, 2, 3, 1).contiguous().view(-1, 1, o_sz, o_sz)
p_m = torch.index_select(p_m, 0, pos)
p_m = nn.UpsamplingBilinear2d(size=[g_sz, g_sz])(p_m)
p_m = p_m.view(-1, g_sz * g_sz)
mask_uf = F.unfold(mask, (g_sz, g_sz), padding=32, stride=8)
mask_uf = torch.transpose(mask_uf, 1, 2).contiguous().view(-1, g_sz * g_sz)
mask_uf = torch.index_select(mask_uf, 0, pos)
loss = F.soft_margin_loss(p_m, mask_uf)
iou_m, iou_5, iou_7 = iou_measure(p_m, mask_uf)
return loss, iou_m, iou_5, iou_7
def iou_measure(pred, label):
pred = pred.ge(0)
mask_sum = pred.eq(1).add(label.eq(1))
intxn = torch.sum(mask_sum == 2, dim=1).float()
union = torch.sum(mask_sum > 0, dim=1).float()
iou = intxn/union
return torch.mean(iou), (torch.sum(iou > 0.5).float()/iou.shape[0]), (torch.sum(iou > 0.7).float()/iou.shape[0])
if __name__ == "__main__":
p_m = torch.randn(4, 63*63, 25, 25)
cls = torch.randn(4, 1, 25, 25) > 0.9
mask = torch.randn(4, 1, 255, 255) * 2 - 1
loss = select_mask_logistic_loss(p_m, mask, cls)
print(loss)
|