File size: 7,100 Bytes
d4b77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization


# MIT License
#
# Copyright (c) 2018 Tom Runia
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to conditions.
#
# Author: Tom Runia
# Date Created: 2018-08-03

import numpy as np

def make_colorwheel():
    """
    Generates a color wheel for optical flow visualization as presented in:
        Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
        URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf

    Code follows the original C++ source code of Daniel Scharstein.
    Code follows the the Matlab source code of Deqing Sun.

    Returns:
        np.ndarray: Color wheel
    """

    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR
    colorwheel = np.zeros((ncols, 3))
    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
    col = col+RY
    # YG
    colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
    colorwheel[col:col+YG, 1] = 255
    col = col+YG
    # GC
    colorwheel[col:col+GC, 1] = 255
    colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
    col = col+GC
    # CB
    colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
    colorwheel[col:col+CB, 2] = 255
    col = col+CB
    # BM
    colorwheel[col:col+BM, 2] = 255
    colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
    col = col+BM
    # MR
    colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
    colorwheel[col:col+MR, 0] = 255
    return colorwheel


def flow_uv_to_colors(u, v, convert_to_bgr=False):
    """
    Applies the flow color wheel to (possibly clipped) flow components u and v.

    According to the C++ source code of Daniel Scharstein
    According to the Matlab source code of Deqing Sun

    Args:
        u (np.ndarray): Input horizontal flow of shape [H,W]
        v (np.ndarray): Input vertical flow of shape [H,W]
        convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.

    Returns:
        np.ndarray: Flow visualization image of shape [H,W,3]
    """
    flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
    colorwheel = make_colorwheel()  # shape [55x3]
    ncols = colorwheel.shape[0]
    rad = np.sqrt(np.square(u) + np.square(v))
    a = np.arctan2(-v, -u)/np.pi
    fk = (a+1) / 2*(ncols-1)
    k0 = np.floor(fk).astype(np.int32)
    k1 = k0 + 1
    k1[k1 == ncols] = 0
    f = fk - k0
    for i in range(colorwheel.shape[1]):
        tmp = colorwheel[:,i]
        col0 = tmp[k0] / 255.0
        col1 = tmp[k1] / 255.0
        col = (1-f)*col0 + f*col1
        idx = (rad <= 1)
        col[idx]  = 1 - rad[idx] * (1-col[idx])
        col[~idx] = col[~idx] * 0.75   # out of range
        # Note the 2-i => BGR instead of RGB
        ch_idx = 2-i if convert_to_bgr else i
        flow_image[:,:,ch_idx] = np.floor(255 * col)
    return flow_image


def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
    """
    Expects a two dimensional flow image of shape.

    Args:
        flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
        clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
        convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.

    Returns:
        np.ndarray: Flow visualization image of shape [H,W,3]
    """
    assert flow_uv.ndim == 3, 'input flow must have three dimensions'
    assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
    if clip_flow is not None:
        flow_uv = np.clip(flow_uv, 0, clip_flow)
    u = flow_uv[:,:,0]
    v = flow_uv[:,:,1]
    rad = np.sqrt(np.square(u) + np.square(v))
    rad_max = np.max(rad)
    epsilon = 1e-5
    u = u / (rad_max + epsilon)
    v = v / (rad_max + epsilon)
    return flow_uv_to_colors(u, v, convert_to_bgr)


def flow_to_image_noNorm(flow_uvs, clip_flow=None, convert_to_bgr=False):
    """
    flow_uvs is a list that accomodates lots of flows
    All the flows in flow_uvs are normalized by the maximum value of in all the flows of flow_uvs
    """
    maximum_value = 0
    for flow_uv in flow_uvs:
        u = flow_uv[:, :, 0]
        v = flow_uv[:, :, 1]
        rad = np.sqrt(np.square(u) + np.square(v))
        rad_max = np.max(rad)
        maximum_value = max(maximum_value, rad_max)
    assert maximum_value > 0, 'Maximum value must be greater than 0'
    flow_colors = []
    for flow_uv in flow_uvs:
        u = flow_uv[:, :, 0]
        v = flow_uv[:, :, 1]
        epsilon = 1e-5
        u = u / (maximum_value + epsilon)
        v = v / (maximum_value + epsilon)
        flow_color = flow_uv_to_colors(u, v, convert_to_bgr)
        flow_colors.append(flow_color)
    return flow_colors


if __name__ == '__main__':
    # cvbase.read_flow test
    import cvbase
    import cv2
    import os
    import glob
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--flow_path', type=str, default='.')
    parser.add_argument('--out_path', type=str, default='.')
    args = parser.parse_args()
    flow_path = args.flow_path
    out_path = args.out_path
    videos = os.listdir(flow_path)
    video_nums = len(videos)
    v = 0
    for video in videos:
        v += 1
        # forward flow visualization
        forward_flows = sorted(glob.glob(os.path.join(flow_path, video, 'forward_flo', '*.flo')))
        backward_flows = sorted(glob.glob(os.path.join(flow_path, video, 'backward_flo', '*.flo')))
        assert len(forward_flows) == len(backward_flows), 'Unmatched number of flows, forward flow is {}, backward flow is {}'.format(len(forward_flows), len(backward_flows))
        forward_out_path = os.path.join(out_path, video, 'forward_flo')
        backward_out_path = os.path.join(out_path, video, 'backward_flo')
        if not os.path.exists(forward_out_path):
            os.makedirs(forward_out_path)
        if not os.path.exists(backward_out_path):
            os.makedirs(backward_out_path)
        for i in range(len(forward_flows)):
            forward_flow_data = cvbase.read_flow(forward_flows[i])
            backward_flow_data = cvbase.read_flow(backward_flows[i])
            forward_flow_image = flow_to_image(forward_flow_data, convert_to_bgr=True)
            backward_flow_image = flow_to_image(backward_flow_data, convert_to_bgr=True)
            cv2.imwrite(os.path.join(forward_out_path, '{:05d}.png'.format(i)), forward_flow_image)
            cv2.imwrite(os.path.join(backward_out_path, '{:05d}.png'.format(i)), backward_flow_image)
        print('[{}]/[{}] video {} has been processed'.format(v, video_nums, video))