File size: 6,324 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import h5py
import json
import os
import scipy.misc
import sys
import numpy as np
import cv2
from os.path import join
def parse_args():
parser = argparse.ArgumentParser(description='Convert dataset')
parser.add_argument('--outdir', default='./', type=str,
help="output dir for json files")
parser.add_argument('--datadir', default='./', type=str,
help="data dir for annotations to be converted")
return parser.parse_args()
def xyxy_to_xywh(xyxy):
"""Convert [x1 y1 x2 y2] box format to [x1 y1 w h] format."""
if isinstance(xyxy, (list, tuple)):
# Single box given as a list of coordinates
assert len(xyxy) == 4
x1, y1 = xyxy[0], xyxy[1]
w = xyxy[2] - x1 + 1
h = xyxy[3] - y1 + 1
return (x1, y1, w, h)
elif isinstance(xyxy, np.ndarray):
# Multiple boxes given as a 2D ndarray
return np.hstack((xyxy[:, 0:2], xyxy[:, 2:4] - xyxy[:, 0:2] + 1))
else:
raise TypeError('Argument xyxy must be a list, tuple, or numpy array.')
def polys_to_boxes(polys):
"""Convert a list of polygons into an array of tight bounding boxes."""
boxes_from_polys = np.zeros((len(polys), 4), dtype=np.float32)
for i in range(len(polys)):
poly = polys[i]
x0 = min(min(p[::2]) for p in poly)
x1 = max(max(p[::2]) for p in poly)
y0 = min(min(p[1::2]) for p in poly)
y1 = max(max(p[1::2]) for p in poly)
boxes_from_polys[i, :] = [x0, y0, x1, y1]
return boxes_from_polys
class Instance(object):
instID = 0
pixelCount = 0
def __init__(self, imgNp, instID):
if (instID ==0 ):
return
self.instID = int(instID)
self.pixelCount = int(self.getInstancePixels(imgNp, instID))
def getInstancePixels(self, imgNp, instLabel):
return (imgNp == instLabel).sum()
def toDict(self):
buildDict = {}
buildDict["instID"] = self.instID
buildDict["pixelCount"] = self.pixelCount
return buildDict
def __str__(self):
return "("+str(self.instID)+")"
def convert_ytb_vos(data_dir, out_dir):
sets = ['train']
ann_dirs = ['train/Annotations/']
json_name = 'instances_%s.json'
num_obj = 0
num_ann = 0
for data_set, ann_dir in zip(sets, ann_dirs):
print('Starting %s' % data_set)
ann_dict = {}
ann_dir = os.path.join(data_dir, ann_dir)
json_ann = json.load(open(os.path.join(ann_dir, '../meta.json')))
for vid, video in enumerate(json_ann['videos']):
v = json_ann['videos'][video]
frames = []
for obj in v['objects']:
o = v['objects'][obj]
frames.extend(o['frames'])
frames = sorted(set(frames))
annotations = []
instanceIds = []
for frame in frames:
file_name = join(video, frame)
fullname = os.path.join(ann_dir, file_name+'.png')
img = cv2.imread(fullname, 0)
h, w = img.shape[:2]
objects = dict()
for instanceId in np.unique(img):
if instanceId == 0:
continue
instanceObj = Instance(img, instanceId)
instanceObj_dict = instanceObj.toDict()
mask = (img == instanceId).astype(np.uint8)
_, contour, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
polygons = [c.reshape(-1).tolist() for c in contour]
instanceObj_dict['contours'] = [p for p in polygons if len(p) > 4]
if len(instanceObj_dict['contours']) and instanceObj_dict['pixelCount'] > 1000:
objects[instanceId] = instanceObj_dict
# else:
# cv2.imshow("disappear?", mask)
# cv2.waitKey(0)
for objId in objects:
if len(objects[objId]) == 0:
continue
obj = objects[objId]
len_p = [len(p) for p in obj['contours']]
if min(len_p) <= 4:
print('Warning: invalid contours.')
continue # skip non-instance categories
ann = dict()
ann['h'] = h
ann['w'] = w
ann['file_name'] = file_name
ann['id'] = int(objId)
# ann['segmentation'] = obj['contours']
# ann['iscrowd'] = 0
ann['area'] = obj['pixelCount']
ann['bbox'] = xyxy_to_xywh(polys_to_boxes([obj['contours']])).tolist()[0]
annotations.append(ann)
instanceIds.append(objId)
num_ann += 1
instanceIds = sorted(set(instanceIds))
num_obj += len(instanceIds)
video_ann = {str(iId): [] for iId in instanceIds}
for ann in annotations:
video_ann[str(ann['id'])].append(ann)
ann_dict[video] = video_ann
if vid % 50 == 0 and vid != 0:
print("process: %d video" % (vid+1))
print("Num Videos: %d" % len(ann_dict))
print("Num Objects: %d" % num_obj)
print("Num Annotations: %d" % num_ann)
items = list(ann_dict.items())
train_dict = dict(items[:3000])
val_dict = dict(items[3000:])
with open(os.path.join(out_dir, json_name % 'train'), 'w') as outfile:
json.dump(train_dict, outfile)
with open(os.path.join(out_dir, json_name % 'val'), 'w') as outfile:
json.dump(val_dict, outfile)
if __name__ == '__main__':
args = parse_args()
convert_ytb_vos(args.datadir, args.outdir)
|