File size: 10,108 Bytes
a1d02b9
 
c0174af
 
 
a1d02b9
 
 
 
 
 
 
 
f4c1e03
 
e3b2a81
a1d02b9
 
 
02f1a14
 
349921d
02f1a14
 
 
 
 
0836db1
eadcf1b
 
 
 
a1d02b9
 
 
 
0836db1
c7aed3b
a1d02b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c462de4
a1d02b9
 
 
 
87cd936
 
 
a1d02b9
 
 
 
 
 
 
 
 
3202733
a1d02b9
 
 
 
 
 
 
e7aba9f
 
a1d02b9
e7aba9f
a1d02b9
 
 
 
 
 
 
e7aba9f
 
a1d02b9
 
e7aba9f
 
 
a1d02b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c462de4
 
a1d02b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c462de4
a1d02b9
 
 
 
 
 
 
 
 
bd61314
a1d02b9
 
 
 
 
 
 
 
 
 
 
400f928
a1d02b9
 
 
 
 
 
 
bd61314
d52b33a
 
a1d02b9
 
 
 
 
 
 
 
 
 
9ccc177
 
11be581
a1d02b9
 
 
c462de4
a1d02b9
 
4983ef5
a1d02b9
 
 
 
 
 
 
 
 
 
d59e8e8
a1d02b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fcc98
a1d02b9
a0d1c32
a1d02b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb50f43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from PIL import Image
import gradio as gr
from FGT_codes.tool.video_inpainting import video_inpainting
from SiamMask.tools.test import *
from SiamMask.experiments.siammask_sharp.custom import Custom
from types import SimpleNamespace
import torch
import numpy as np
import torchvision
import cv2
import sys
from os.path import exists, join, basename, splitext
import os
import argparse

project_name = ''

sys.path.append(project_name)

sys.path.append(os.path.abspath(join(project_name, 'FGT_codes')))
sys.path.append(os.path.abspath(join(project_name, 'FGT_codes', 'tool')))
sys.path.append(os.path.abspath(join(project_name, 'FGT_codes', 'tool','configs')))
sys.path.append(os.path.abspath(join(project_name, 'FGT_codes', 'LAFC', 'flowCheckPoint')))
sys.path.append(os.path.abspath(join(project_name, 'FGT_codes', 'LAFC', 'checkpoint')))
sys.path.append(os.path.abspath(join(project_name, 'FGT_codes', 'FGT', 'checkpoint')))
sys.path.append(os.path.abspath(join(project_name, 'FGT_codes', 'LAFC',
                'flowCheckPoint', 'raft-things.pth')))

# sys.path.append(join(project_name, 'SiamMask',
#                 'experiments', 'siammask_sharp'))
# sys.path.append(join(project_name, 'SiamMask', 'models'))
# sys.path.append(join(project_name, 'SiamMask'))

exp_path = join(project_name, 'SiamMask/experiments/siammask_sharp')
pretrained_path1 = join(exp_path, 'SiamMask_DAVIS.pth')


print(sys.path)

torch.set_grad_enabled(False)

# init SiamMask
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
cfg = load_config(SimpleNamespace(config=join(exp_path, 'config_davis.json')))
siammask = Custom(anchors=cfg['anchors'])
siammask = load_pretrain(siammask, pretrained_path1)
siammask = siammask.eval().to(device)

# constants
object_x = 0
object_y = 0
object_width = 0
object_height = 0
in_fps = 24
original_frame_list = []
mask_list = []

parser = argparse.ArgumentParser()
# parser.add_argument('--opt', default='configs/object_removal.yaml',
#                     help='Please select your config file for inference')
parser.add_argument('--opt', default=os.path.abspath(join(project_name, 'FGT_codes', 'tool','configs','object_removal.yaml')),
                    help='Please select your config file for inference')
# video completion
parser.add_argument('--mode', default='object_removal', choices=[
    'object_removal', 'watermark_removal', 'video_extrapolation'], help="modes: object_removal / video_extrapolation")
parser.add_argument(
    '--path', default='/myData/davis_resized/walking', help="dataset for evaluation")
parser.add_argument(
    '--path_mask', default='/myData/dilateAnnotations_4/walking', help="mask for object removal")
parser.add_argument(
    '--outroot', default=os.path.abspath(project_name), help="output directory")
parser.add_argument('--consistencyThres', dest='consistencyThres', default=5, type=float,
                    help='flow consistency error threshold')
parser.add_argument('--alpha', dest='alpha', default=0.1, type=float)
parser.add_argument('--Nonlocal', dest='Nonlocal',
                    default=False, type=bool)

# RAFT
# parser.add_argument(
#     '--raft_model', default='../LAFC/flowCheckPoint/raft-things.pth', help="restore checkpoint")
parser.add_argument(
    '--raft_model', default=os.path.abspath(join(project_name, 'FGT_codes', 'LAFC','flowCheckPoint','raft-things.pth')), help="restore checkpoint")
parser.add_argument('--small', action='store_true', help='use small model')
parser.add_argument('--mixed_precision',
                    action='store_true', help='use mixed precision')
parser.add_argument('--alternate_corr', action='store_true',
                    help='use efficent correlation implementation')

# LAFC
# parser.add_argument('--lafc_ckpts', type=str, default='../LAFC/checkpoint')
parser.add_argument('--lafc_ckpts', type=str, default=os.path.abspath(join(project_name, 'FGT_codes', 'LAFC','checkpoint')))

# FGT
# parser.add_argument('--fgt_ckpts', type=str, default='../FGT/checkpoint')
parser.add_argument('--fgt_ckpts', type=str, default=os.path.abspath(join(project_name, 'FGT_codes', 'FGT','checkpoint')))


# extrapolation
parser.add_argument('--H_scale', dest='H_scale', default=2,
                    type=float, help='H extrapolation scale')
parser.add_argument('--W_scale', dest='W_scale', default=2,
                    type=float, help='W extrapolation scale')

# Image basic information
parser.add_argument('--imgH', type=int, default=256)
parser.add_argument('--imgW', type=int, default=432)
parser.add_argument('--flow_mask_dilates', type=int, default=8)
parser.add_argument('--frame_dilates', type=int, default=0)

parser.add_argument('--gpu', type=int, default=0)

# FGT inference parameters
parser.add_argument('--step', type=int, default=10)
parser.add_argument('--num_ref', type=int, default=-1)
parser.add_argument('--neighbor_stride', type=int, default=5)

parser.add_argument('--out_fps', type=int, default=24)

# visualization
parser.add_argument('--vis_flows', action='store_true',
                    help='Visualize the initialized flows')
parser.add_argument('--vis_completed_flows',
                    action='store_true', help='Visualize the completed flows')
parser.add_argument('--vis_prop', action='store_true',
                    help='Visualize the frames after stage-I filling (flow guided content propagation)')
parser.add_argument('--vis_frame', action='store_true',
                    help='Visualize frames')

args = parser.parse_args()


def getBoundaries(mask):
    if mask is None:
        return 0, 0, 0, 0

    indexes = np.where((mask == [255, 255, 255]).all(axis=2))
    print(indexes)
    x1 = min(indexes[1])
    y1 = min(indexes[0])
    x2 = max(indexes[1])
    y2 = max(indexes[0])

    return x1, y1, (x2-x1), (y2-y1)


def track_and_mask(vid, original_frame, masked_frame):
    x, y, w, h = getBoundaries(masked_frame)
    f = 0

    video_capture = cv2.VideoCapture()
    if video_capture.open(vid):
        width, height = int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(
            video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = video_capture.get(cv2.CAP_PROP_FPS)

        in_fps = fps
        # can't write out mp4, so try to write into an AVI file
        video_writer = cv2.VideoWriter(
            "output.avi", cv2.VideoWriter_fourcc(*'MP42'), fps, (width, height))

        while video_capture.isOpened():
            ret, frame = video_capture.read()

            if not ret:
                break
            
            # frame = cv2.resize(frame, (w - w % 8, h - h % 8))
            if f == 0:
                target_pos = np.array([x + w / 2, y + h / 2])
                target_sz = np.array([w, h])
                # init tracker
                state = siamese_init(
                    frame, target_pos, target_sz, siammask, cfg['hp'], device=device)
            else:
                # track
                state = siamese_track(
                    state, frame, mask_enable=True, refine_enable=True, device=device)
                original_frame_list.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
                location = state['ploygon'].flatten()
                mask = state['mask'] > state['p'].seg_thr
                frame[:, :, 2] = (mask > 0) * 255 + \
                    (mask == 0) * frame[:, :, 2]

                mask = mask.astype(np.uint8)  # convert to an unsigned byte
                mask = mask * 255
                mask_list.append(mask)
                #cv2.polylines(frame, [np.int0(location).reshape(
                #    (-1, 1, 2))], True, (0, 255, 0), 3)

                video_writer.write(frame)
            f = f + 1

        video_capture.release()
        video_writer.release()

    else:
        print("can't open the given input video file!")

    print('Original Frame Count: ',len(original_frame_list))
    print('Mask Frame Count: ',len(mask_list))
    return "output.avi"


def inpaint_video():
    args.out_fps = in_fps
    video_inpainting(args, original_frame_list, mask_list)

    return "result.mp4"


def get_first_frame(video):
    video_capture = cv2.VideoCapture()
    if video_capture.open(video):
        width, height = int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(
            video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))

    if video_capture.isOpened():
        ret, frame = video_capture.read()
        RGB_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    return RGB_frame


def drawRectangle(frame, mask):
    x1, y1, x2, y2 = getBoundaries(mask)

    return cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)


def getStartEndPoints(mask):
    if mask is None:
        return 0, 0, 0, 0

    indexes = np.where((mask == [255, 255, 255]).all(axis=2))
    print(indexes)
    x1 = min(indexes[1])
    y1 = min(indexes[0])
    x2 = max(indexes[1])
    y2 = max(indexes[0])

    return x1, y1, x2, y2


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=2):
            with gr.Row():
                in_video = gr.PlayableVideo()
            with gr.Row():
                first_frame = gr.ImageMask()
            with gr.Row():
                approve_mask = gr.Button(value="Approve Mask")
        with gr.Column(scale=1):
            with gr.Row():
                original_image = gr.Image(interactive=False)
            with gr.Row():
                masked_image = gr.Image(interactive=False)
        with gr.Column(scale=2):
            out_video = gr.Video()
            out_video_inpaint = gr.Video()
            track_mask = gr.Button(value="Track and Mask")
            inpaint = gr.Button(value="Inpaint")

    in_video.change(fn=get_first_frame, inputs=[
                    in_video], outputs=[first_frame])
    approve_mask.click(lambda x: [x['image'], x['mask']], first_frame, [
                       original_image, masked_image])
    track_mask.click(fn=track_and_mask, inputs=[
                     in_video, original_image, masked_image], outputs=[out_video])
    inpaint.click(fn=inpaint_video, outputs=[out_video_inpaint])


demo.launch(debug=True)