File size: 26,103 Bytes
d4b77ac aa52658 d4b77ac aa52658 243e43c aa52658 d4b77ac 1b90ade eadcf1b 834b83c d4b77ac 834b83c d4b77ac 834b83c d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from __future__ import division
import argparse
import logging
import numpy as np
import cv2
from PIL import Image
import os
from os import makedirs
from os.path import join, isdir, isfile
import sys
sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..")))
sys.path.append(os.path.abspath(os.path.join(__file__, "..","..","utils")))
from SiamMask.utils.log_helper import init_log, add_file_handler
from SiamMask.utils.load_helper import load_pretrain
from SiamMask.utils.bbox_helper import get_axis_aligned_bbox, cxy_wh_2_rect
from SiamMask.utils.benchmark_helper import load_dataset, dataset_zoo
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from SiamMask.utils.anchors import Anchors
from SiamMask.utils.tracker_config import TrackerConfig
from SiamMask.utils.config_helper import load_config
from SiamMask.utils.pyvotkit.region import vot_overlap, vot_float2str
thrs = np.arange(0.3, 0.5, 0.05)
parser = argparse.ArgumentParser(description='Test SiamMask')
parser.add_argument('--arch', dest='arch', default='', choices=['Custom',],
help='architecture of pretrained model')
parser.add_argument('--config', dest='config', required=True, help='hyper-parameter for SiamMask')
parser.add_argument('--resume', default='', type=str, required=True,
metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--mask', action='store_true', help='whether use mask output')
parser.add_argument('--refine', action='store_true', help='whether use mask refine output')
parser.add_argument('--dataset', dest='dataset', default='VOT2018', choices=dataset_zoo,
help='datasets')
parser.add_argument('-l', '--log', default="log_test.txt", type=str, help='log file')
parser.add_argument('-v', '--visualization', dest='visualization', action='store_true',
help='whether visualize result')
parser.add_argument('--save_mask', action='store_true', help='whether use save mask for davis')
parser.add_argument('--gt', action='store_true', help='whether use gt rect for davis (Oracle)')
parser.add_argument('--video', default='', type=str, help='test special video')
parser.add_argument('--cpu', action='store_true', help='cpu mode')
parser.add_argument('--debug', action='store_true', help='debug mode')
def to_torch(ndarray):
if type(ndarray).__module__ == 'numpy':
return torch.from_numpy(ndarray)
elif not torch.is_tensor(ndarray):
raise ValueError("Cannot convert {} to torch tensor"
.format(type(ndarray)))
return ndarray
def im_to_torch(img):
img = np.transpose(img, (2, 0, 1)) # C*H*W
img = to_torch(img).float()
return img
def get_subwindow_tracking(im, pos, model_sz, original_sz, avg_chans, out_mode='torch'):
if isinstance(pos, float):
pos = [pos, pos]
sz = original_sz
im_sz = im.shape
c = (original_sz + 1) / 2
context_xmin = round(pos[0] - c)
context_xmax = context_xmin + sz - 1
context_ymin = round(pos[1] - c)
context_ymax = context_ymin + sz - 1
left_pad = int(max(0., -context_xmin))
top_pad = int(max(0., -context_ymin))
right_pad = int(max(0., context_xmax - im_sz[1] + 1))
bottom_pad = int(max(0., context_ymax - im_sz[0] + 1))
context_xmin = context_xmin + left_pad
context_xmax = context_xmax + left_pad
context_ymin = context_ymin + top_pad
context_ymax = context_ymax + top_pad
# zzp: a more easy speed version
r, c, k = im.shape
if any([top_pad, bottom_pad, left_pad, right_pad]):
te_im = np.zeros((r + top_pad + bottom_pad, c + left_pad + right_pad, k), np.uint8)
te_im[top_pad:top_pad + r, left_pad:left_pad + c, :] = im
if top_pad:
te_im[0:top_pad, left_pad:left_pad + c, :] = avg_chans
if bottom_pad:
te_im[r + top_pad:, left_pad:left_pad + c, :] = avg_chans
if left_pad:
te_im[:, 0:left_pad, :] = avg_chans
if right_pad:
te_im[:, c + left_pad:, :] = avg_chans
im_patch_original = te_im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
else:
im_patch_original = im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
if not np.array_equal(model_sz, original_sz):
im_patch = cv2.resize(im_patch_original, (model_sz, model_sz))
else:
im_patch = im_patch_original
# cv2.imshow('crop', im_patch)
# cv2.waitKey(0)
return im_to_torch(im_patch) if out_mode in 'torch' else im_patch
def generate_anchor(cfg, score_size):
anchors = Anchors(cfg)
anchor = anchors.anchors
x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3]
anchor = np.stack([(x1+x2)*0.5, (y1+y2)*0.5, x2-x1, y2-y1], 1)
total_stride = anchors.stride
anchor_num = anchor.shape[0]
anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4))
ori = - (score_size // 2) * total_stride
xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)],
[ori + total_stride * dy for dy in range(score_size)])
xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \
np.tile(yy.flatten(), (anchor_num, 1)).flatten()
anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
return anchor
def siamese_init(im, target_pos, target_sz, model, hp=None, device='cpu'):
state = dict()
state['im_h'] = im.shape[0]
state['im_w'] = im.shape[1]
p = TrackerConfig()
p.update(hp, model.anchors)
p.renew()
net = model
p.scales = model.anchors['scales']
p.ratios = model.anchors['ratios']
p.anchor_num = model.anchor_num
p.anchor = generate_anchor(model.anchors, p.score_size)
avg_chans = np.mean(im, axis=(0, 1))
wc_z = target_sz[0] + p.context_amount * sum(target_sz)
hc_z = target_sz[1] + p.context_amount * sum(target_sz)
s_z = round(np.sqrt(wc_z * hc_z))
# initialize the exemplar
z_crop = get_subwindow_tracking(im, target_pos, p.exemplar_size, s_z, avg_chans)
z = Variable(z_crop.unsqueeze(0))
net.template(z.to(device))
if p.windowing == 'cosine':
window = np.outer(np.hanning(p.score_size), np.hanning(p.score_size))
elif p.windowing == 'uniform':
window = np.ones((p.score_size, p.score_size))
window = np.tile(window.flatten(), p.anchor_num)
state['p'] = p
state['net'] = net
state['avg_chans'] = avg_chans
state['window'] = window
state['target_pos'] = target_pos
state['target_sz'] = target_sz
return state
def siamese_track(state, im, mask_enable=False, refine_enable=False, device='cpu', debug=False):
p = state['p']
net = state['net']
avg_chans = state['avg_chans']
window = state['window']
target_pos = state['target_pos']
target_sz = state['target_sz']
wc_x = target_sz[1] + p.context_amount * sum(target_sz)
hc_x = target_sz[0] + p.context_amount * sum(target_sz)
s_x = np.sqrt(wc_x * hc_x)
scale_x = p.exemplar_size / s_x
d_search = (p.instance_size - p.exemplar_size) / 2
pad = d_search / scale_x
s_x = s_x + 2 * pad
crop_box = [target_pos[0] - round(s_x) / 2, target_pos[1] - round(s_x) / 2, round(s_x), round(s_x)]
if debug:
im_debug = im.copy()
crop_box_int = np.int0(crop_box)
cv2.rectangle(im_debug, (crop_box_int[0], crop_box_int[1]),
(crop_box_int[0] + crop_box_int[2], crop_box_int[1] + crop_box_int[3]), (255, 0, 0), 2)
cv2.imshow('search area', im_debug)
cv2.waitKey(0)
# extract scaled crops for search region x at previous target position
x_crop = Variable(get_subwindow_tracking(im, target_pos, p.instance_size, round(s_x), avg_chans).unsqueeze(0))
if mask_enable:
score, delta, mask = net.track_mask(x_crop.to(device))
else:
score, delta = net.track(x_crop.to(device))
delta = delta.permute(1, 2, 3, 0).contiguous().view(4, -1).data.cpu().numpy()
score = F.softmax(score.permute(1, 2, 3, 0).contiguous().view(2, -1).permute(1, 0), dim=1).data[:,
1].cpu().numpy()
delta[0, :] = delta[0, :] * p.anchor[:, 2] + p.anchor[:, 0]
delta[1, :] = delta[1, :] * p.anchor[:, 3] + p.anchor[:, 1]
delta[2, :] = np.exp(delta[2, :]) * p.anchor[:, 2]
delta[3, :] = np.exp(delta[3, :]) * p.anchor[:, 3]
def change(r):
return np.maximum(r, 1. / r)
def sz(w, h):
pad = (w + h) * 0.5
sz2 = (w + pad) * (h + pad)
return np.sqrt(sz2)
def sz_wh(wh):
pad = (wh[0] + wh[1]) * 0.5
sz2 = (wh[0] + pad) * (wh[1] + pad)
return np.sqrt(sz2)
# size penalty
target_sz_in_crop = target_sz*scale_x
s_c = change(sz(delta[2, :], delta[3, :]) / (sz_wh(target_sz_in_crop))) # scale penalty
r_c = change((target_sz_in_crop[0] / target_sz_in_crop[1]) / (delta[2, :] / delta[3, :])) # ratio penalty
penalty = np.exp(-(r_c * s_c - 1) * p.penalty_k)
pscore = penalty * score
# cos window (motion model)
pscore = pscore * (1 - p.window_influence) + window * p.window_influence
best_pscore_id = np.argmax(pscore)
pred_in_crop = delta[:, best_pscore_id] / scale_x
lr = penalty[best_pscore_id] * score[best_pscore_id] * p.lr # lr for OTB
res_x = pred_in_crop[0] + target_pos[0]
res_y = pred_in_crop[1] + target_pos[1]
res_w = target_sz[0] * (1 - lr) + pred_in_crop[2] * lr
res_h = target_sz[1] * (1 - lr) + pred_in_crop[3] * lr
target_pos = np.array([res_x, res_y])
target_sz = np.array([res_w, res_h])
# for Mask Branch
if mask_enable:
best_pscore_id_mask = np.unravel_index(best_pscore_id, (5, p.score_size, p.score_size))
delta_x, delta_y = best_pscore_id_mask[2], best_pscore_id_mask[1]
if refine_enable:
mask = net.track_refine((delta_y, delta_x)).to(device).sigmoid().squeeze().view(
p.out_size, p.out_size).cpu().data.numpy()
else:
mask = mask[0, :, delta_y, delta_x].sigmoid(). \
squeeze().view(p.out_size, p.out_size).cpu().data.numpy()
def crop_back(image, bbox, out_sz, padding=-1):
a = (out_sz[0] - 1) / bbox[2]
b = (out_sz[1] - 1) / bbox[3]
c = -a * bbox[0]
d = -b * bbox[1]
mapping = np.array([[a, 0, c],
[0, b, d]]).astype(np.float)
crop = cv2.warpAffine(image, mapping, (out_sz[0], out_sz[1]),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=padding)
return crop
s = crop_box[2] / p.instance_size
sub_box = [crop_box[0] + (delta_x - p.base_size / 2) * p.total_stride * s,
crop_box[1] + (delta_y - p.base_size / 2) * p.total_stride * s,
s * p.exemplar_size, s * p.exemplar_size]
s = p.out_size / sub_box[2]
back_box = [-sub_box[0] * s, -sub_box[1] * s, state['im_w'] * s, state['im_h'] * s]
mask_in_img = crop_back(mask, back_box, (state['im_w'], state['im_h']))
target_mask = (mask_in_img > p.seg_thr).astype(np.uint8)
if cv2.__version__[-5] == '4':
contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
else:
_, contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt_area = [cv2.contourArea(cnt) for cnt in contours]
if len(contours) != 0 and np.max(cnt_area) > 100:
contour = contours[np.argmax(cnt_area)] # use max area polygon
polygon = contour.reshape(-1, 2)
# pbox = cv2.boundingRect(polygon) # Min Max Rectangle
prbox = cv2.boxPoints(cv2.minAreaRect(polygon)) # Rotated Rectangle
# box_in_img = pbox
rbox_in_img = prbox
else: # empty mask
location = cxy_wh_2_rect(target_pos, target_sz)
rbox_in_img = np.array([[location[0], location[1]],
[location[0] + location[2], location[1]],
[location[0] + location[2], location[1] + location[3]],
[location[0], location[1] + location[3]]])
target_pos[0] = max(0, min(state['im_w'], target_pos[0]))
target_pos[1] = max(0, min(state['im_h'], target_pos[1]))
target_sz[0] = max(10, min(state['im_w'], target_sz[0]))
target_sz[1] = max(10, min(state['im_h'], target_sz[1]))
state['target_pos'] = target_pos
state['target_sz'] = target_sz
state['score'] = score[best_pscore_id]
state['mask'] = mask_in_img if mask_enable else []
state['ploygon'] = rbox_in_img if mask_enable else []
return state
def track_vot(model, video, hp=None, mask_enable=False, refine_enable=False, device='cpu'):
regions = [] # result and states[1 init / 2 lost / 0 skip]
image_files, gt = video['image_files'], video['gt']
start_frame, end_frame, lost_times, toc = 0, len(image_files), 0, 0
for f, image_file in enumerate(image_files):
im = cv2.imread(image_file)
tic = cv2.getTickCount()
if f == start_frame: # init
cx, cy, w, h = get_axis_aligned_bbox(gt[f])
target_pos = np.array([cx, cy])
target_sz = np.array([w, h])
state = siamese_init(im, target_pos, target_sz, model, hp, device) # init tracker
location = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
regions.append(1 if 'VOT' in args.dataset else gt[f])
elif f > start_frame: # tracking
state = siamese_track(state, im, mask_enable, refine_enable, device, args.debug) # track
if mask_enable:
location = state['ploygon'].flatten()
mask = state['mask']
else:
location = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
mask = []
if 'VOT' in args.dataset:
gt_polygon = ((gt[f][0], gt[f][1]), (gt[f][2], gt[f][3]),
(gt[f][4], gt[f][5]), (gt[f][6], gt[f][7]))
if mask_enable:
pred_polygon = ((location[0], location[1]), (location[2], location[3]),
(location[4], location[5]), (location[6], location[7]))
else:
pred_polygon = ((location[0], location[1]),
(location[0] + location[2], location[1]),
(location[0] + location[2], location[1] + location[3]),
(location[0], location[1] + location[3]))
b_overlap = vot_overlap(gt_polygon, pred_polygon, (im.shape[1], im.shape[0]))
else:
b_overlap = 1
if b_overlap:
regions.append(location)
else: # lost
regions.append(2)
lost_times += 1
start_frame = f + 5 # skip 5 frames
else: # skip
regions.append(0)
toc += cv2.getTickCount() - tic
if args.visualization and f >= start_frame: # visualization (skip lost frame)
im_show = im.copy()
if f == 0: cv2.destroyAllWindows()
if gt.shape[0] > f:
if len(gt[f]) == 8:
cv2.polylines(im_show, [np.array(gt[f], np.int).reshape((-1, 1, 2))], True, (0, 255, 0), 3)
else:
cv2.rectangle(im_show, (gt[f, 0], gt[f, 1]), (gt[f, 0] + gt[f, 2], gt[f, 1] + gt[f, 3]), (0, 255, 0), 3)
if len(location) == 8:
if mask_enable:
mask = mask > state['p'].seg_thr
im_show[:, :, 2] = mask * 255 + (1 - mask) * im_show[:, :, 2]
location_int = np.int0(location)
cv2.polylines(im_show, [location_int.reshape((-1, 1, 2))], True, (0, 255, 255), 3)
else:
location = [int(l) for l in location]
cv2.rectangle(im_show, (location[0], location[1]),
(location[0] + location[2], location[1] + location[3]), (0, 255, 255), 3)
cv2.putText(im_show, str(f), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
cv2.putText(im_show, str(lost_times), (40, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.putText(im_show, str(state['score']) if 'score' in state else '', (40, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow(video['name'], im_show)
cv2.waitKey(1)
toc /= cv2.getTickFrequency()
# save result
name = args.arch.split('.')[0] + '_' + ('mask_' if mask_enable else '') + ('refine_' if refine_enable else '') +\
args.resume.split('/')[-1].split('.')[0]
if 'VOT' in args.dataset:
video_path = join('test', args.dataset, name,
'baseline', video['name'])
if not isdir(video_path): makedirs(video_path)
result_path = join(video_path, '{:s}_001.txt'.format(video['name']))
with open(result_path, "w") as fin:
for x in regions:
fin.write("{:d}\n".format(x)) if isinstance(x, int) else \
fin.write(','.join([vot_float2str("%.4f", i) for i in x]) + '\n')
else: # OTB
video_path = join('test', args.dataset, name)
if not isdir(video_path): makedirs(video_path)
result_path = join(video_path, '{:s}.txt'.format(video['name']))
with open(result_path, "w") as fin:
for x in regions:
fin.write(','.join([str(i) for i in x])+'\n')
logger.info('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps Lost: {:d}'.format(
v_id, video['name'], toc, f / toc, lost_times))
return lost_times, f / toc
def MultiBatchIouMeter(thrs, outputs, targets, start=None, end=None):
targets = np.array(targets)
outputs = np.array(outputs)
num_frame = targets.shape[0]
if start is None:
object_ids = np.array(list(range(outputs.shape[0]))) + 1
else:
object_ids = [int(id) for id in start]
num_object = len(object_ids)
res = np.zeros((num_object, len(thrs)), dtype=np.float32)
output_max_id = np.argmax(outputs, axis=0).astype('uint8')+1
outputs_max = np.max(outputs, axis=0)
for k, thr in enumerate(thrs):
output_thr = outputs_max > thr
for j in range(num_object):
target_j = targets == object_ids[j]
if start is None:
start_frame, end_frame = 1, num_frame - 1
else:
start_frame, end_frame = start[str(object_ids[j])] + 1, end[str(object_ids[j])] - 1
iou = []
for i in range(start_frame, end_frame):
pred = (output_thr[i] * output_max_id[i]) == (j+1)
mask_sum = (pred == 1).astype(np.uint8) + (target_j[i] > 0).astype(np.uint8)
intxn = np.sum(mask_sum == 2)
union = np.sum(mask_sum > 0)
if union > 0:
iou.append(intxn / union)
elif union == 0 and intxn == 0:
iou.append(1)
res[j, k] = np.mean(iou)
return res
def track_vos(model, video, hp=None, mask_enable=False, refine_enable=False, mot_enable=False, device='cpu'):
image_files = video['image_files']
annos = [np.array(Image.open(x)) for x in video['anno_files']]
if 'anno_init_files' in video:
annos_init = [np.array(Image.open(x)) for x in video['anno_init_files']]
else:
annos_init = [annos[0]]
if not mot_enable:
annos = [(anno > 0).astype(np.uint8) for anno in annos]
annos_init = [(anno_init > 0).astype(np.uint8) for anno_init in annos_init]
if 'start_frame' in video:
object_ids = [int(id) for id in video['start_frame']]
else:
object_ids = [o_id for o_id in np.unique(annos[0]) if o_id != 0]
if len(object_ids) != len(annos_init):
annos_init = annos_init*len(object_ids)
object_num = len(object_ids)
toc = 0
pred_masks = np.zeros((object_num, len(image_files), annos[0].shape[0], annos[0].shape[1]))-1
for obj_id, o_id in enumerate(object_ids):
if 'start_frame' in video:
start_frame = video['start_frame'][str(o_id)]
end_frame = video['end_frame'][str(o_id)]
else:
start_frame, end_frame = 0, len(image_files)
for f, image_file in enumerate(image_files):
im = cv2.imread(image_file)
tic = cv2.getTickCount()
if f == start_frame: # init
mask = annos_init[obj_id] == o_id
x, y, w, h = cv2.boundingRect((mask).astype(np.uint8))
cx, cy = x + w/2, y + h/2
target_pos = np.array([cx, cy])
target_sz = np.array([w, h])
state = siamese_init(im, target_pos, target_sz, model, hp, device=device) # init tracker
elif end_frame >= f > start_frame: # tracking
state = siamese_track(state, im, mask_enable, refine_enable, device=device) # track
mask = state['mask']
toc += cv2.getTickCount() - tic
if end_frame >= f >= start_frame:
pred_masks[obj_id, f, :, :] = mask
toc /= cv2.getTickFrequency()
if len(annos) == len(image_files):
multi_mean_iou = MultiBatchIouMeter(thrs, pred_masks, annos,
start=video['start_frame'] if 'start_frame' in video else None,
end=video['end_frame'] if 'end_frame' in video else None)
for i in range(object_num):
for j, thr in enumerate(thrs):
logger.info('Fusion Multi Object{:20s} IOU at {:.2f}: {:.4f}'.format(video['name'] + '_' + str(i + 1), thr,
multi_mean_iou[i, j]))
else:
multi_mean_iou = []
if args.save_mask:
video_path = join('test', args.dataset, 'SiamMask', video['name'])
if not isdir(video_path): makedirs(video_path)
pred_mask_final = np.array(pred_masks)
pred_mask_final = (np.argmax(pred_mask_final, axis=0).astype('uint8') + 1) * (
np.max(pred_mask_final, axis=0) > state['p'].seg_thr).astype('uint8')
for i in range(pred_mask_final.shape[0]):
cv2.imwrite(join(video_path, image_files[i].split('/')[-1].split('.')[0] + '.png'), pred_mask_final[i].astype(np.uint8))
if args.visualization:
pred_mask_final = np.array(pred_masks)
pred_mask_final = (np.argmax(pred_mask_final, axis=0).astype('uint8') + 1) * (
np.max(pred_mask_final, axis=0) > state['p'].seg_thr).astype('uint8')
COLORS = np.random.randint(128, 255, size=(object_num, 3), dtype="uint8")
COLORS = np.vstack([[0, 0, 0], COLORS]).astype("uint8")
mask = COLORS[pred_mask_final]
for f, image_file in enumerate(image_files):
output = ((0.4 * cv2.imread(image_file)) + (0.6 * mask[f,:,:,:])).astype("uint8")
cv2.imshow("mask", output)
cv2.waitKey(1)
logger.info('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps'.format(
v_id, video['name'], toc, f*len(object_ids) / toc))
return multi_mean_iou, f*len(object_ids) / toc
def main():
global args, logger, v_id
args = parser.parse_args()
cfg = load_config(args)
init_log('global', logging.INFO)
if args.log != "":
add_file_handler('global', args.log, logging.INFO)
logger = logging.getLogger('global')
logger.info(args)
# setup model
if args.arch == 'Custom':
from custom import Custom
model = Custom(anchors=cfg['anchors'])
else:
parser.error('invalid architecture: {}'.format(args.arch))
if args.resume:
assert isfile(args.resume), '{} is not a valid file'.format(args.resume)
model = load_pretrain(model, args.resume)
model.eval()
device = torch.device('cuda' if (torch.cuda.is_available() and not args.cpu) else 'cpu')
model = model.to(device)
# setup dataset
dataset = load_dataset(args.dataset)
# VOS or VOT?
if args.dataset in ['DAVIS2016', 'DAVIS2017', 'ytb_vos'] and args.mask:
vos_enable = True # enable Mask output
else:
vos_enable = False
total_lost = 0 # VOT
iou_lists = [] # VOS
speed_list = []
for v_id, video in enumerate(dataset.keys(), start=1):
if args.video != '' and video != args.video:
continue
if vos_enable:
iou_list, speed = track_vos(model, dataset[video], cfg['hp'] if 'hp' in cfg.keys() else None,
args.mask, args.refine, args.dataset in ['DAVIS2017', 'ytb_vos'], device=device)
iou_lists.append(iou_list)
else:
lost, speed = track_vot(model, dataset[video], cfg['hp'] if 'hp' in cfg.keys() else None,
args.mask, args.refine, device=device)
total_lost += lost
speed_list.append(speed)
# report final result
if vos_enable:
for thr, iou in zip(thrs, np.mean(np.concatenate(iou_lists), axis=0)):
logger.info('Segmentation Threshold {:.2f} mIoU: {:.3f}'.format(thr, iou))
else:
logger.info('Total Lost: {:d}'.format(total_lost))
logger.info('Mean Speed: {:.2f} FPS'.format(np.mean(speed_list)))
if __name__ == '__main__':
main()
|