File size: 11,103 Bytes
d4b77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
import argparse
import logging
import os
import shutil
import time
import torch
from torch.utils.data import DataLoader
from utils.log_helper import init_log, print_speed, add_file_handler, Dummy
from utils.load_helper import load_pretrain, restore_from
from utils.average_meter_helper import AverageMeter
from datasets.siam_rpn_dataset import DataSets
import models as models
import math
from utils.lr_helper import build_lr_scheduler
from tensorboardX import SummaryWriter
from utils.config_helper import load_config
import json
import cv2
from torch.utils.collect_env import get_pretty_env_info
torch.backends.cudnn.benchmark = True
model_zoo = sorted(name for name in models.__dict__
if not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch Tracking Training')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--epochs', default=50, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch', default=64, type=int,
metavar='N', help='mini-batch size (default: 64)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--clip', default=10.0, type=float,
help='gradient clip value')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', dest='pretrained', default='',
help='use pre-trained model')
parser.add_argument('--config', dest='config', required=True,
help='hyperparameter of SiamRPN in json format')
parser.add_argument('--arch', dest='arch', default='', choices=model_zoo + ['Custom',''],
help='architecture of pretrained model')
parser.add_argument('-l', '--log', default="log.txt", type=str,
help='log file')
parser.add_argument('-s', '--save_dir', default='snapshot', type=str,
help='save dir')
parser.add_argument('--log-dir', default='board', help='TensorBoard log dir')
best_acc = 0.
def collect_env_info():
env_str = get_pretty_env_info()
env_str += "\n OpenCV ({})".format(cv2.__version__)
return env_str
def build_data_loader(cfg):
logger = logging.getLogger('global')
logger.info("build train dataset") # train_dataset
train_set = DataSets(cfg['train_datasets'], cfg['anchors'], args.epochs)
train_set.shuffle()
logger.info("build val dataset") # val_dataset
if not 'val_datasets' in cfg.keys():
cfg['val_datasets'] = cfg['train_datasets']
val_set = DataSets(cfg['val_datasets'], cfg['anchors'])
val_set.shuffle()
train_loader = DataLoader(train_set, batch_size=args.batch, num_workers=args.workers,
pin_memory=True, sampler=None)
val_loader = DataLoader(val_set, batch_size=args.batch, num_workers=args.workers,
pin_memory=True, sampler=None)
logger.info('build dataset done')
return train_loader, val_loader
def build_opt_lr(model, cfg, args, epoch):
trainable_params = model.features.param_groups(cfg['lr']['start_lr'], cfg['lr']['feature_lr_mult']) + \
model.rpn_model.param_groups(cfg['lr']['start_lr'], cfg['lr']['rpn_lr_mult'])
optimizer = torch.optim.SGD(trainable_params, args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
lr_scheduler = build_lr_scheduler(optimizer, cfg['lr'], epochs=args.epochs)
lr_scheduler.step(epoch)
return optimizer, lr_scheduler
def main():
global args, best_acc, tb_writer, logger
args = parser.parse_args()
init_log('global', logging.INFO)
if args.log != "":
add_file_handler('global', args.log, logging.INFO)
logger = logging.getLogger('global')
logger.info(args)
cfg = load_config(args)
logger.info("config \n{}".format(json.dumps(cfg, indent=4)))
logger.info("\n" + collect_env_info())
if args.log_dir:
tb_writer = SummaryWriter(args.log_dir)
else:
tb_writer = Dummy()
# build dataset
train_loader, val_loader = build_data_loader(cfg)
if args.arch == 'Custom':
from custom import Custom
model = Custom(pretrain=True, anchors=cfg['anchors'])
else:
model = models.__dict__[args.arch](anchors=cfg['anchors'])
logger.info(model)
if args.pretrained:
model = load_pretrain(model, args.pretrained)
model = model.cuda()
dist_model = torch.nn.DataParallel(model, list(range(torch.cuda.device_count()))).cuda()
if args.resume and args.start_epoch != 0:
model.features.unfix((args.start_epoch - 1) / args.epochs)
optimizer, lr_scheduler = build_opt_lr(model, cfg, args, args.start_epoch)
logger.info(lr_scheduler)
# optionally resume from a checkpoint
if args.resume:
assert os.path.isfile(args.resume), '{} is not a valid file'.format(args.resume)
model, optimizer, args.start_epoch, best_acc, arch = restore_from(model, optimizer, args.resume)
dist_model = torch.nn.DataParallel(model, list(range(torch.cuda.device_count()))).cuda()
epoch = args.start_epoch
if dist_model.module.features.unfix(epoch/args.epochs):
logger.info('unfix part model.')
optimizer, lr_scheduler = build_opt_lr(dist_model.module, cfg, args, epoch)
lr_scheduler.step(epoch)
cur_lr = lr_scheduler.get_cur_lr()
logger.info('epoch:{} resume lr {}'.format(epoch, cur_lr))
logger.info('model prepare done')
train(train_loader, dist_model, optimizer, lr_scheduler, args.start_epoch, cfg)
def train(train_loader, model, optimizer, lr_scheduler, epoch, cfg):
global tb_index, best_acc, cur_lr
cur_lr = lr_scheduler.get_cur_lr()
logger = logging.getLogger('global')
avg = AverageMeter()
model.train()
model = model.cuda()
end = time.time()
def is_valid_number(x):
return not(math.isnan(x) or math.isinf(x) or x > 1e4)
num_per_epoch = len(train_loader.dataset) // args.epochs // args.batch
start_epoch = epoch
epoch = epoch
for iter, input in enumerate(train_loader):
# next epoch
if epoch != iter // num_per_epoch + start_epoch:
epoch = iter // num_per_epoch + start_epoch
if not os.path.exists(args.save_dir): # makedir/save model
os.makedirs(args.save_dir)
save_checkpoint({
'epoch': epoch,
'arch': args.arch,
'state_dict': model.module.state_dict(),
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
'anchor_cfg': cfg['anchors']
}, False,
os.path.join(args.save_dir, 'checkpoint_e%d.pth' % (epoch)),
os.path.join(args.save_dir, 'best.pth'))
if epoch == args.epochs:
return
if model.module.features.unfix(epoch/args.epochs):
logger.info('unfix part model.')
optimizer, lr_scheduler = build_opt_lr(model.module, cfg, args, epoch)
lr_scheduler.step(epoch)
cur_lr = lr_scheduler.get_cur_lr()
logger.info('epoch:{}'.format(epoch))
tb_index = iter
if iter % num_per_epoch == 0 and iter != 0:
for idx, pg in enumerate(optimizer.param_groups):
logger.info("epoch {} lr {}".format(epoch, pg['lr']))
tb_writer.add_scalar('lr/group%d'%(idx+1), pg['lr'], tb_index)
data_time = time.time() - end
avg.update(data_time=data_time)
x = {
'cfg': cfg,
'template': torch.autograd.Variable(input[0]).cuda(),
'search': torch.autograd.Variable(input[1]).cuda(),
'label_cls': torch.autograd.Variable(input[2]).cuda(),
'label_loc': torch.autograd.Variable(input[3]).cuda(),
'label_loc_weight': torch.autograd.Variable(input[4]).cuda(),
}
optimizer.zero_grad()
outputs = model(x)
rpn_cls_loss, rpn_loc_loss = outputs['losses']
rpn_cls_loss, rpn_loc_loss = torch.mean(rpn_cls_loss), torch.mean(rpn_loc_loss)
cls_weight, reg_weight = cfg['loss']['weight']
loss = rpn_cls_loss * cls_weight + rpn_loc_loss * reg_weight
loss.backward()
if cfg['clip']['split']:
torch.nn.utils.clip_grad_norm_(model.module.features.parameters(), cfg['clip']['feature'])
torch.nn.utils.clip_grad_norm_(model.module.rpn_model.parameters(), cfg['clip']['rpn'])
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) # gradient clip
siamrpn_loss = loss.item()
if is_valid_number(siamrpn_loss):
optimizer.step()
batch_time = time.time() - end
avg.update(batch_time=batch_time, rpn_cls_loss=rpn_cls_loss,
rpn_loc_loss=rpn_loc_loss, siamrpn_loss=siamrpn_loss)
tb_writer.add_scalar('loss/cls', rpn_cls_loss, tb_index)
tb_writer.add_scalar('loss/loc', rpn_loc_loss, tb_index)
end = time.time()
if (iter + 1) % args.print_freq == 0:
logger.info('Epoch: [{0}][{1}/{2}] lr: {lr:.6f}\t{batch_time:s}\t{data_time:s}'
'\t{rpn_cls_loss:s}\t{rpn_loc_loss:s}\t{siamrpn_loss:s}'.format(
epoch+1, (iter + 1) % num_per_epoch, num_per_epoch, lr=cur_lr,
batch_time=avg.batch_time, data_time=avg.data_time, rpn_cls_loss=avg.rpn_cls_loss,
rpn_loc_loss=avg.rpn_loc_loss, siamrpn_loss=avg.siamrpn_loss))
print_speed(iter + 1, avg.batch_time.avg, args.epochs * num_per_epoch)
def save_checkpoint(state, is_best, filename='checkpoint.pth', best_file='model_best.pth'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, best_file)
if __name__ == '__main__':
main()
|