oguzakif's picture
init repo
d4b77ac
raw
history blame
5.58 kB
import random
import numpy as np
import cv2
def random_bbox(img_height, img_width, vertical_margin, horizontal_margin, mask_height, mask_width):
maxt = img_height - vertical_margin - mask_height
maxl = img_width - horizontal_margin - mask_width
t = random.randint(vertical_margin, maxt)
l = random.randint(horizontal_margin, maxl)
h = random.randint(mask_height // 2, mask_height)
w = random.randint(mask_width // 2, mask_width)
return (t, l, h, w) # 产生随机块状box,这个box后面会发展成为mask
def mid_bbox_mask(img_height, img_width, mask_height, mask_width):
def npmask(bbox, height, width):
mask = np.zeros((height, width, 1), np.float32)
mask[bbox[0]: bbox[0] + bbox[2], bbox[1]: bbox[1] + bbox[3], :] = 255.
return mask
bbox = (img_height * 3 // 8, img_width * 3 // 8, mask_height, mask_width)
mask = npmask(bbox, img_height, img_width)
return mask
def bbox2mask(img_height, img_width, max_delta_height, max_delta_width, bbox):
"""Generate mask tensor from bbox.
Args:
bbox: configuration tuple, (top, left, height, width)
config: Config should have configuration including IMG_SHAPES,
MAX_DELTA_HEIGHT, MAX_DELTA_WIDTH.
Returns:
tf.Tensor: output with shape [B, 1, H, W]
"""
def npmask(bbox, height, width, delta_h, delta_w):
mask = np.zeros((height, width, 1), np.float32)
h = np.random.randint(delta_h // 2 + 1) # 防止有0产生
w = np.random.randint(delta_w // 2 + 1)
mask[bbox[0] + h: bbox[0] + bbox[2] - h, bbox[1] + w: bbox[1] + bbox[3] - w, :] = 255. # height_true = height - 2 * h, width_true = width - 2 * w
return mask
mask = npmask(bbox, img_height, img_width,
max_delta_height,
max_delta_width)
return mask
def matrix2bbox(img_height, img_width, mask_height, mask_width, row, column):
"""Generate masks with a matrix form
@param img_height
@param img_width
@param mask_height
@param mask_width
@param row: number of blocks in row
@param column: number of blocks in column
@return mbbox: multiple bboxes in (y, h, h, w) manner
"""
assert img_height - column * mask_height > img_height // 2, "Too many masks across a column"
assert img_width - row * mask_width > img_width // 2, "Too many masks across a row"
interval_height = (img_height - column * mask_height) // (column + 1)
interval_width = (img_width - row * mask_width) // (row + 1)
mbbox = []
for i in range(row):
for j in range(column):
y = interval_height * (j+1) + j * mask_height
x = interval_width * (i+1) + i * mask_width
mbbox.append((y, x, mask_height, mask_width))
return mbbox
def mbbox2masks(img_height, img_width, mbbox):
def npmask(mbbox, height, width):
mask = np.zeros((height, width, 1), np.float32)
for bbox in mbbox:
mask[bbox[0]: bbox[0] + bbox[2], bbox[1]: bbox[1] + bbox[3], :] = 255. # height_true = height - 2 * h, width_true = width - 2 * w
return mask
mask = npmask(mbbox, img_height, img_width)
return mask
def draw_line(mask, startX, startY, angle, length, brushWidth):
"""assume the size of mask is (H,W,1)
"""
assert len(mask.shape) == 2 or mask.shape[2] == 1, "The channel of mask doesn't fit the opencv format"
offsetX = int(np.round(length * np.cos(angle)))
offsetY = int(np.round(length * np.sin(angle)))
endX = startX + offsetX
endY = startY + offsetY
if endX > mask.shape[1]:
endX = mask.shape[1]
if endY > mask.shape[0]:
endY = mask.shape[0]
mask_processed = cv2.line(mask, (startX, startY), (endX, endY), 255, brushWidth)
return mask_processed, endX, endY
def draw_circle(mask, circle_x, circle_y, brushWidth):
radius = brushWidth // 2
assert len(mask.shape) == 2 or mask.shape[2] == 1, "The channel of mask doesn't fit the opencv format"
mask_processed = cv2.circle(mask, (circle_x, circle_y), radius, 255)
return mask_processed
def freeFormMask(img_height, img_width, maxVertex, maxLength, maxBrushWidth, maxAngle):
mask = np.zeros((img_height, img_width))
numVertex = random.randint(1, maxVertex)
startX = random.randint(10, img_width)
startY = random.randint(10, img_height)
brushWidth = random.randint(10, maxBrushWidth)
for i in range(numVertex):
angle = random.uniform(0, maxAngle)
if i % 2 == 0:
angle = 2 * np.pi - angle
length = random.randint(10, maxLength)
mask, endX, endY = draw_line(mask, startX, startY, angle, length, brushWidth)
startX = startX + int(length * np.sin(angle))
startY = startY + int(length * np.cos(angle))
mask = draw_circle(mask, endX, endY, brushWidth)
if random.random() < 0.5:
mask = np.fliplr(mask)
if random.random() < 0.5:
mask = np.flipud(mask)
if len(mask.shape) == 2:
mask = mask[:, :, np.newaxis]
return mask
if __name__ == "__main__":
# for stationary mask generation
# stationary_mask_generator(240, 480, 50, 120)
# for free-form mask generation
# mask = freeFormMask(240, 480, 30, 50, 20, np.pi)
# cv2.imwrite('mask.png', mask)
# for matrix mask generation
# img_height, img_width = 240, 480
# masks = matrix2bbox(240, 480, 20, 20, 5, 4)
# matrixMask = mbbox2masks(img_height, img_width, masks)
# cv2.imwrite('matrixMask.png', matrixMask)
pass