|
import numpy as np |
|
from skimage.metrics import peak_signal_noise_ratio as psnr |
|
from skimage.metrics import structural_similarity as ssim |
|
import os |
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" |
|
|
|
|
|
def calculate_metrics(results, gts): |
|
B, H, W, C = results.shape |
|
psnr_values, ssim_values, L1errors, L2errors = [], [], [], [] |
|
for i in range(B): |
|
result = results[i] |
|
gt = gts[i] |
|
result_img = result |
|
gt_img = gt |
|
residual = result - gt |
|
L1error = np.mean(np.abs(residual)) |
|
L2error = np.sum(residual ** 2) ** 0.5 / (H * W * C) |
|
psnr_value = psnr(result_img, gt_img) |
|
ssim_value = ssim(result_img, gt_img, multichannel=True) |
|
L1errors.append(L1error) |
|
L2errors.append(L2error) |
|
psnr_values.append(psnr_value) |
|
ssim_values.append(ssim_value) |
|
L1_value = np.mean(L1errors) |
|
L2_value = np.mean(L2errors) |
|
psnr_value = np.mean(psnr_values) |
|
ssim_value = np.mean(ssim_values) |
|
|
|
return {'l1': L1_value, 'l2': L2_value, 'psnr': psnr_value, 'ssim': ssim_value} |
|
|