|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class Attention(nn.Module): |
|
""" |
|
Compute 'Scaled Dot Product Attention |
|
""" |
|
|
|
def __init__(self, p=0.1): |
|
super(Attention, self).__init__() |
|
self.dropout = nn.Dropout(p=p) |
|
|
|
def forward(self, query, key, value): |
|
scores = torch.matmul(query, key.transpose(-2, -1) |
|
) / math.sqrt(query.size(-1)) |
|
p_attn = F.softmax(scores, dim=-1) |
|
p_attn = self.dropout(p_attn) |
|
p_val = torch.matmul(p_attn, value) |
|
return p_val, p_attn |
|
|
|
|
|
class TMHSA(nn.Module): |
|
def __init__(self, token_size, group_size, d_model, head, p=0.1): |
|
super(TMHSA, self).__init__() |
|
self.h, self.w = token_size |
|
self.group_size = group_size |
|
self.wh, self.ww = math.ceil(self.h / self.group_size), math.ceil(self.w / self.group_size) |
|
self.pad_r = (self.ww - self.w % self.ww) % self.ww |
|
self.pad_b = (self.wh - self.h % self.wh) % self.wh |
|
self.new_h, self.new_w = self.h + self.pad_b, self.w + self.pad_r |
|
self.window_h, self.window_w = self.new_h // self.group_size, self.new_w // self.group_size |
|
self.d_model = d_model |
|
self.p = p |
|
self.query_embedding = nn.Linear(d_model, d_model) |
|
self.key_embedding = nn.Linear(d_model, d_model) |
|
self.value_embedding = nn.Linear(d_model, d_model) |
|
self.output_linear = nn.Linear(d_model, d_model) |
|
self.attention = Attention(p=p) |
|
self.head = head |
|
|
|
def inference(self, x, t, h, w): |
|
|
|
wh, ww = math.ceil(h / self.group_size), math.ceil(w / self.group_size) |
|
pad_r = (ww - w % ww) % ww |
|
pad_b = (wh - h % wh) % wh |
|
new_h, new_w = h + pad_b, w + pad_r |
|
window_h, window_w = new_h // self.group_size, new_w // self.group_size |
|
bt, n, c = x.shape |
|
b = bt // t |
|
c_h = c // self.head |
|
x = x.view(bt, h, w, c) |
|
if pad_r > 0 or pad_b > 0: |
|
x = F.pad(x, |
|
(0, 0, 0, pad_r, 0, pad_b)) |
|
query = self.query_embedding(x) |
|
key = self.key_embedding(x) |
|
value = self.value_embedding(x) |
|
query = query.view(b, t, self.group_size, window_h, self.group_size, window_w, self.head, c_h) |
|
query = query.permute(0, 2, 4, 6, 1, 3, 5, 7).reshape(b, self.group_size * self.group_size, self.head, -1, c_h) |
|
key = key.view(b, t, self.group_size, window_h, self.group_size, window_w, self.head, c_h) |
|
key = key.permute(0, 2, 4, 6, 1, 3, 5, 7).reshape(b, self.group_size * self.group_size, self.head, -1, c_h) |
|
value = value.view(b, t, self.group_size, window_h, self.group_size, window_w, self.head, c_h) |
|
value = value.permute(0, 2, 4, 6, 1, 3, 5, 7).reshape(b, self.group_size * self.group_size, self.head, -1, c_h) |
|
att, _ = self.attention(query, key, value) |
|
att = att.view(b, self.group_size, self.group_size, self.head, t, window_h, window_w, c_h) |
|
att = att.permute(0, 4, 1, 5, 2, 6, 3, 7).contiguous().view(bt, new_h, new_w, c) |
|
if pad_b > 0 or pad_r > 0: |
|
att = att[:, :h, :w, :] |
|
att = att.reshape(bt, n, c) |
|
output = self.output_linear(att) |
|
return output |
|
|
|
def forward(self, x, t, h=0, w=0): |
|
bt, n, c = x.shape |
|
if h == 0 and w == 0: |
|
assert n == self.h * self.w, 'Wrong input shape: {} with token: h->{}, w->{}'.format(x.shape, self.h, |
|
self.w) |
|
else: |
|
assert n == h * w, 'Wrong input shape: {} with token: h->{}, w->{}'.format(x.shape, h, w) |
|
return self.inference(x, t, h, w) |
|
b = bt // t |
|
c_h = c // self.head |
|
x = x.view(bt, self.h, self.w, c) |
|
if self.pad_r > 0 or self.pad_b > 0: |
|
x = F.pad(x, ( |
|
0, 0, 0, self.pad_r, 0, self.pad_b)) |
|
query = self.query_embedding(x) |
|
key = self.key_embedding(x) |
|
value = self.value_embedding(x) |
|
query = query.view(b, t, self.group_size, self.window_h, self.group_size, self.window_w, self.head, c_h) |
|
query = query.permute(0, 2, 4, 6, 1, 3, 5, 7).reshape(b, self.group_size * self.group_size, self.head, -1, c_h) |
|
key = key.view(b, t, self.group_size, self.window_h, self.group_size, self.window_w, self.head, c_h) |
|
key = key.permute(0, 2, 4, 6, 1, 3, 5, 7).reshape(b, self.group_size * self.group_size, self.head, -1, c_h) |
|
value = value.view(b, t, self.group_size, self.window_h, self.group_size, self.window_w, self.head, c_h) |
|
value = value.permute(0, 2, 4, 6, 1, 3, 5, 7).reshape(b, self.group_size * self.group_size, self.head, -1, c_h) |
|
att, _ = self.attention(query, key, value) |
|
att = att.view(b, self.group_size, self.group_size, self.head, t, self.window_h, self.window_w, c_h) |
|
att = att.permute(0, 4, 1, 5, 2, 6, 3, 7).contiguous().view(bt, self.new_h, self.new_w, c) |
|
if self.pad_b > 0 or self.pad_r > 0: |
|
att = att[:, :self.h, :self.w, :] |
|
att = att.reshape(bt, n, c) |
|
output = self.output_linear(att) |
|
return output |
|
|