|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class Attention(nn.Module): |
|
""" |
|
Compute 'Scaled Dot Product Attention |
|
""" |
|
|
|
def __init__(self, p=0.1): |
|
super(Attention, self).__init__() |
|
self.dropout = nn.Dropout(p=p) |
|
|
|
def forward(self, query, key, value): |
|
scores = torch.matmul(query, key.transpose(-2, -1) |
|
) / math.sqrt(query.size(-1)) |
|
p_attn = F.softmax(scores, dim=-1) |
|
p_attn = self.dropout(p_attn) |
|
p_val = torch.matmul(p_attn, value) |
|
return p_val, p_attn |
|
|
|
|
|
class SWMHSA_depthGlobalWindowConcatLN_qkFlow_reweightFlow(nn.Module): |
|
def __init__(self, token_size, window_size, kernel_size, d_model, flow_dModel, head, p=0.1): |
|
super(SWMHSA_depthGlobalWindowConcatLN_qkFlow_reweightFlow, self).__init__() |
|
self.h, self.w = token_size |
|
self.head = head |
|
self.window_size = window_size |
|
self.d_model = d_model |
|
self.flow_dModel = flow_dModel |
|
in_channels = d_model + flow_dModel |
|
self.query_embedding = nn.Linear(in_channels, d_model) |
|
self.key_embedding = nn.Linear(in_channels, d_model) |
|
self.value_embedding = nn.Linear(d_model, d_model) |
|
self.output_linear = nn.Linear(d_model, d_model) |
|
self.attention = Attention(p) |
|
self.pad_l = self.pad_t = 0 |
|
self.pad_r = (self.window_size - self.w % self.window_size) % self.window_size |
|
self.pad_b = (self.window_size - self.h % self.window_size) % self.window_size |
|
self.new_h, self.new_w = self.h + self.pad_b, self.w + self.pad_r |
|
self.group_h, self.group_w = self.new_h // self.window_size, self.new_w // self.window_size |
|
self.global_extract_v = nn.Conv2d(d_model, d_model, kernel_size=kernel_size, stride=kernel_size, padding=0, |
|
groups=d_model) |
|
self.global_extract_k = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=kernel_size, |
|
padding=0, |
|
groups=in_channels) |
|
self.q_norm = nn.LayerNorm(d_model + flow_dModel) |
|
self.k_norm = nn.LayerNorm(d_model + flow_dModel) |
|
self.v_norm = nn.LayerNorm(d_model) |
|
self.reweightFlow = nn.Sequential( |
|
nn.Linear(in_channels, flow_dModel), |
|
nn.Sigmoid() |
|
) |
|
|
|
def inference(self, x, f, h, w): |
|
pad_r = (self.window_size - w % self.window_size) % self.window_size |
|
pad_b = (self.window_size - h % self.window_size) % self.window_size |
|
new_h, new_w = h + pad_b, w + pad_r |
|
group_h, group_w = new_h // self.window_size, new_w // self.window_size |
|
bt, n, c = x.shape |
|
cf = f.shape[2] |
|
x = x.view(bt, h, w, c) |
|
f = f.view(bt, h, w, cf) |
|
if pad_r > 0 or pad_b > 0: |
|
x = F.pad(x, (0, 0, self.pad_l, pad_r, self.pad_t, pad_b)) |
|
f = F.pad(f, (0, 0, self.pad_l, pad_r, self.pad_t, pad_b)) |
|
y = x.permute(0, 3, 1, 2) |
|
xf = torch.cat((x, f), dim=-1) |
|
flow_weights = self.reweightFlow(xf) |
|
f = f * flow_weights |
|
qk = torch.cat((x, f), dim=-1) |
|
qk_c = qk.shape[-1] |
|
|
|
q = qk.reshape(bt, group_h, self.window_size, group_w, self.window_size, qk_c).transpose(2, 3) |
|
q = q.reshape(bt, group_h * group_w, self.window_size * self.window_size, qk_c) |
|
|
|
ky = qk.permute(0, 3, 1, 2) |
|
k_global = self.global_extract_k(ky) |
|
k_global = k_global.permute(0, 2, 3, 1).reshape(bt, -1, qk_c).unsqueeze(1).repeat(1, group_h * group_w, 1, 1) |
|
k = torch.cat((q, k_global), dim=2) |
|
|
|
q = self.q_norm(q) |
|
k = self.k_norm(k) |
|
|
|
global_tokens = self.global_extract_v(y) |
|
global_tokens = global_tokens.permute(0, 2, 3, 1).reshape(bt, -1, c).unsqueeze(1).repeat(1, |
|
group_h * group_w, |
|
1, |
|
1) |
|
x = x.reshape(bt, group_h, self.window_size, group_w, self.window_size, c).transpose(2, |
|
3) |
|
x = x.reshape(bt, group_h * group_w, self.window_size * self.window_size, c) |
|
v = torch.cat((x, global_tokens), dim=2) |
|
v = self.v_norm(v) |
|
query = self.query_embedding(q) |
|
key = self.key_embedding(k) |
|
value = self.value_embedding(v) |
|
query = query.reshape(bt, group_h * group_w, self.window_size * self.window_size, self.head, |
|
c // self.head).permute(0, 1, 3, 2, 4) |
|
key = key.reshape(bt, group_h * group_w, -1, self.head, |
|
c // self.head).permute(0, 1, 3, 2, 4) |
|
value = value.reshape(bt, group_h * group_w, -1, self.head, |
|
c // self.head).permute(0, 1, 3, 2, 4) |
|
attn, _ = self.attention(query, key, value) |
|
x = attn.transpose(2, 3).reshape(bt, group_h, group_w, self.window_size, self.window_size, c) |
|
x = x.transpose(2, 3).reshape(bt, group_h * self.window_size, group_w * self.window_size, c) |
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :h, :w, :].contiguous() |
|
x = x.reshape(bt, n, c) |
|
output = self.output_linear(x) |
|
return output |
|
|
|
def forward(self, x, f, t, h=0, w=0): |
|
if h != 0 or w != 0: |
|
return self.inference(x, f, h, w) |
|
bt, n, c = x.shape |
|
cf = f.shape[2] |
|
x = x.view(bt, self.h, self.w, c) |
|
f = f.view(bt, self.h, self.w, cf) |
|
if self.pad_r > 0 or self.pad_b > 0: |
|
x = F.pad(x, (0, 0, self.pad_l, self.pad_r, self.pad_t, self.pad_b)) |
|
f = F.pad(f, (0, 0, self.pad_l, self.pad_r, self.pad_t, self.pad_b)) |
|
y = x.permute(0, 3, 1, 2) |
|
xf = torch.cat((x, f), dim=-1) |
|
weights = self.reweightFlow(xf) |
|
f = f * weights |
|
qk = torch.cat((x, f), dim=-1) |
|
qk_c = qk.shape[-1] |
|
|
|
q = qk.reshape(bt, self.group_h, self.window_size, self.group_w, self.window_size, qk_c).transpose(2, 3) |
|
q = q.reshape(bt, self.group_h * self.group_w, self.window_size * self.window_size, qk_c) |
|
|
|
ky = qk.permute(0, 3, 1, 2) |
|
k_global = self.global_extract_k(ky) |
|
k_global = k_global.permute(0, 2, 3, 1).reshape(bt, -1, qk_c).unsqueeze(1).repeat(1, |
|
self.group_h * self.group_w, |
|
1, 1) |
|
k = torch.cat((q, k_global), dim=2) |
|
|
|
q = self.q_norm(q) |
|
k = self.k_norm(k) |
|
|
|
global_tokens = self.global_extract_v(y) |
|
global_tokens = global_tokens.permute(0, 2, 3, 1).reshape(bt, -1, c).unsqueeze(1).repeat(1, |
|
self.group_h * self.group_w, |
|
1, |
|
1) |
|
x = x.reshape(bt, self.group_h, self.window_size, self.group_w, self.window_size, c).transpose(2, |
|
3) |
|
x = x.reshape(bt, self.group_h * self.group_w, self.window_size * self.window_size, c) |
|
v = torch.cat((x, global_tokens), dim=2) |
|
v = self.v_norm(v) |
|
query = self.query_embedding(q) |
|
key = self.key_embedding(k) |
|
value = self.value_embedding(v) |
|
query = query.reshape(bt, self.group_h * self.group_w, self.window_size * self.window_size, self.head, |
|
c // self.head).permute(0, 1, 3, 2, 4) |
|
key = key.reshape(bt, self.group_h * self.group_w, -1, self.head, |
|
c // self.head).permute(0, 1, 3, 2, 4) |
|
value = value.reshape(bt, self.group_h * self.group_w, -1, self.head, |
|
c // self.head).permute(0, 1, 3, 2, 4) |
|
attn, _ = self.attention(query, key, value) |
|
x = attn.transpose(2, 3).reshape(bt, self.group_h, self.group_w, self.window_size, self.window_size, c) |
|
x = x.transpose(2, 3).reshape(bt, self.group_h * self.window_size, self.group_w * self.window_size, c) |
|
if self.pad_r > 0 or self.pad_b > 0: |
|
x = x[:, :self.h, :self.w, :].contiguous() |
|
x = x.reshape(bt, n, c) |
|
output = self.output_linear(x) |
|
return output |
|
|