|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def warp_optical_flow(batch_x, batch_flow): |
|
""" |
|
Modified from https://github.com/NVlabs/PWC-Net/blob/fc6ebf9a70a7387164df09a3a2070ba16f9c1ede/PyTorch/models/PWCNet.py # NOQA |
|
warp an im2 back to im1, according to the optical flow |
|
x: [B, L, C, H, W] (im2) |
|
flo: [B, L, 2, H, W] flow |
|
""" |
|
B, L, C, H, W = batch_x.shape |
|
B = B * L |
|
x = batch_x.contiguous().view(-1, C, H, W) |
|
flo = batch_flow.view(-1, 2, H, W) |
|
|
|
xx = torch.arange(0, W).view(1, -1).repeat(H, 1) |
|
yy = torch.arange(0, H).view(-1, 1).repeat(1, W) |
|
xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1) |
|
yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1) |
|
grid = torch.cat((xx, yy), 1).float() |
|
|
|
if x.is_cuda: |
|
grid = grid.cuda() |
|
vgrid = grid + flo |
|
|
|
|
|
vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :] / max(W - 1, 1) - 1.0 |
|
vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :] / max(H - 1, 1) - 1.0 |
|
|
|
vgrid = vgrid.permute(0, 2, 3, 1) |
|
output = nn.functional.grid_sample(x, vgrid) |
|
mask = torch.autograd.Variable(torch.ones(x.size())).cuda() |
|
mask = nn.functional.grid_sample(mask, vgrid) |
|
|
|
mask[mask < 0.9999] = 0 |
|
mask[mask > 0] = 1 |
|
|
|
result = output * mask |
|
return result.view(-1, L, C, H, W) |
|
|
|
|
|
UNKNOWN_FLOW_THRESH = 1e7 |
|
|
|
|
|
def flow_to_image(flow): |
|
""" |
|
Convert flow into middlebury color code image |
|
:param flow: optical flow map |
|
:return: optical flow image in middlebury color |
|
""" |
|
u = flow[:, :, 0] |
|
v = flow[:, :, 1] |
|
|
|
maxu = -999. |
|
maxv = -999. |
|
minu = 999. |
|
minv = 999. |
|
|
|
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) |
|
u[idxUnknow] = 0 |
|
v[idxUnknow] = 0 |
|
|
|
maxu = max(maxu, np.max(u)) |
|
minu = min(minu, np.min(u)) |
|
|
|
maxv = max(maxv, np.max(v)) |
|
minv = min(minv, np.min(v)) |
|
|
|
rad = np.sqrt(u ** 2 + v ** 2) |
|
maxrad = max(-1, np.max(rad)) |
|
|
|
u = u / (maxrad + np.finfo(float).eps) |
|
v = v / (maxrad + np.finfo(float).eps) |
|
|
|
img = compute_color(u, v) |
|
|
|
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) |
|
img[idx] = 0 |
|
|
|
return np.uint8(img) |
|
|
|
|
|
def compute_color(u, v): |
|
""" |
|
compute optical flow color map |
|
:param u: optical flow horizontal map |
|
:param v: optical flow vertical map |
|
:return: optical flow in color code |
|
""" |
|
[h, w] = u.shape |
|
img = np.zeros([h, w, 3]) |
|
nanIdx = np.isnan(u) | np.isnan(v) |
|
u[nanIdx] = 0 |
|
v[nanIdx] = 0 |
|
|
|
colorwheel = make_color_wheel() |
|
ncols = np.size(colorwheel, 0) |
|
|
|
rad = np.sqrt(u ** 2 + v ** 2) |
|
|
|
a = np.arctan2(-v, -u) / np.pi |
|
|
|
fk = (a + 1) / 2 * (ncols - 1) + 1 |
|
|
|
k0 = np.floor(fk).astype(int) |
|
|
|
k1 = k0 + 1 |
|
k1[k1 == ncols + 1] = 1 |
|
f = fk - k0 |
|
|
|
for i in range(0, np.size(colorwheel, 1)): |
|
tmp = colorwheel[:, i] |
|
col0 = tmp[k0 - 1] / 255 |
|
col1 = tmp[k1 - 1] / 255 |
|
col = (1 - f) * col0 + f * col1 |
|
|
|
idx = rad <= 1 |
|
col[idx] = 1 - rad[idx] * (1 - col[idx]) |
|
notidx = np.logical_not(idx) |
|
|
|
col[notidx] *= 0.75 |
|
img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx))) |
|
|
|
return img |
|
|
|
|
|
def make_color_wheel(): |
|
""" |
|
Generate color wheel according Middlebury color code |
|
:return: Color wheel |
|
""" |
|
RY = 15 |
|
YG = 6 |
|
GC = 4 |
|
CB = 11 |
|
BM = 13 |
|
MR = 6 |
|
|
|
ncols = RY + YG + GC + CB + BM + MR |
|
|
|
colorwheel = np.zeros([ncols, 3]) |
|
|
|
col = 0 |
|
|
|
|
|
colorwheel[0:RY, 0] = 255 |
|
colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY)) |
|
col += RY |
|
|
|
|
|
colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG)) |
|
colorwheel[col:col + YG, 1] = 255 |
|
col += YG |
|
|
|
|
|
colorwheel[col:col + GC, 1] = 255 |
|
colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC)) |
|
col += GC |
|
|
|
|
|
colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB)) |
|
colorwheel[col:col + CB, 2] = 255 |
|
col += CB |
|
|
|
|
|
colorwheel[col:col + BM, 2] = 255 |
|
colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM)) |
|
col += + BM |
|
|
|
|
|
colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) |
|
colorwheel[col:col + MR, 0] = 255 |
|
|
|
return colorwheel |
|
|