video-object-remover / FGT_codes /LAFC /data /train_dataset_edge.py
oguzakif's picture
init repo
d4b77ac
raw
history blame
7.28 kB
import random
import pickle
import logging
import torch
import cv2
import os
from torch.utils.data.dataset import Dataset
import numpy as np
from skimage.feature import canny
from .util.STTN_mask import create_random_shape_with_random_motion
from cvbase import read_flow, flow2rgb
from .util.flow_utils import region_fill as rf
import imageio
logger = logging.getLogger('base')
class VideoBasedDataset(Dataset):
def __init__(self, opt, dataInfo):
self.opt = opt
self.mode = opt['mode']
self.sampleMethod = opt['sample']
self.dataInfo = dataInfo
self.flow_height, self.flow_width = dataInfo['flow']['flow_height'], dataInfo['flow']['flow_width']
self.data_path = dataInfo['flow_path']
self.frame_path = dataInfo['frame_path']
self.train_list = os.listdir(self.data_path)
self.name2length = self.dataInfo['name2len']
self.require_edge = opt['use_edges']
self.sigma = dataInfo['edge']['sigma']
self.low_threshold = dataInfo['edge']['low_threshold']
self.high_threshold = dataInfo['edge']['high_threshold']
with open(self.name2length, 'rb') as f:
self.name2len = pickle.load(f)
self.norm = opt['norm']
self.sequenceLen = self.opt['num_flows']
self.flow_interval = self.opt['flow_interval']
self.halfLen = self.sequenceLen // 2
def __len__(self):
return len(self.train_list)
def __getitem__(self, idx):
try:
item = self.load_item(idx)
except:
print('Loading error: ' + self.train_list[idx])
item = self.load_item(0)
return item
def frameSample(self, flowLen):
if self.sampleMethod == 'random':
indices = [i for i in range(flowLen)]
sampledIndices = random.sample(indices, self.sequenceLen)
else:
sampledIndices = []
pivot = random.randint(0, flowLen - 1)
for i in range(-self.halfLen, self.halfLen + 1):
index = pivot + i * self.flow_interval
if index < 0:
index = 0
if index >= flowLen:
index = flowLen - 1
sampledIndices.append(index)
return sampledIndices
def load_item(self, idx):
info = {}
video = self.train_list[idx]
info['name'] = video
if np.random.uniform(0, 1) > 0.5:
direction = 'forward_flo'
else:
direction = 'backward_flo'
flow_dir = os.path.join(self.data_path, video, direction)
frame_dir = os.path.join(self.frame_path, video)
flowLen = self.name2len[video] - 1
assert flowLen > self.sequenceLen, 'Flow length {} is not enough'.format(flowLen)
sampledIndices = self.frameSample(flowLen)
candidateMasks = create_random_shape_with_random_motion(self.sequenceLen, 0.9, 1.1, 1,
10)
flows, diffused_flows, masks = [], [], []
current_frames, shift_frames = None, None
mask_counter = 0
for i in sampledIndices:
flow = read_flow(os.path.join(flow_dir, '{:05d}.flo'.format(i)))
mask = self.read_mask(candidateMasks[mask_counter], self.flow_height, self.flow_width)
mask_counter += 1
flow = self.flow_tf(flow, self.flow_height, self.flow_width)
diffused_flow = self.diffusion_fill(flow, mask)
flows.append(flow)
masks.append(mask)
diffused_flows.append(diffused_flow)
targetIndex = sampledIndices[self.sequenceLen // 2]
current_frames, shift_frames = self.read_frames(frame_dir, targetIndex, direction, self.flow_width,
self.flow_height)
flow_gray, edge = self.load_edge(flows[self.halfLen])
inputs = {'flows': flows, 'diffused_flows': diffused_flows, 'current_frame': current_frames,
'shift_frame': shift_frames, 'edges': edge, 'masks': masks, 'flow_gray': flow_gray}
return self.to_tensor(inputs)
def read_frames(self, frame_dir, index, direction, width, height):
if direction == 'forward_flo':
current_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index))
shift_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index + 1))
else:
current_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index + 1))
shift_frame = os.path.join(frame_dir, '{:05d}.jpg'.format(index))
current_frame = imageio.imread(current_frame)
shift_frame = imageio.imread(shift_frame)
current_frame = cv2.resize(current_frame, (width, height), cv2.INTER_LINEAR)
shift_frame = cv2.resize(shift_frame, (width, height), cv2.INTER_LINEAR)
current_frame = current_frame / 255.
shift_frame = shift_frame / 255.
return current_frame, shift_frame
def diffusion_fill(self, flow, mask):
flow_filled = np.zeros(flow.shape)
flow_filled[:, :, 0] = rf.regionfill(flow[:, :, 0] * (1 - mask), mask)
flow_filled[:, :, 1] = rf.regionfill(flow[:, :, 1] * (1 - mask), mask)
return flow_filled
def flow_tf(self, flow, height, width):
flow_shape = flow.shape
flow_resized = cv2.resize(flow, (width, height), cv2.INTER_LINEAR)
flow_resized[:, :, 0] *= (float(width) / float(flow_shape[1]))
flow_resized[:, :, 1] *= (float(height) / float(flow_shape[0]))
return flow_resized
def read_mask(self, mask, height, width):
mask = np.array(mask)
mask = mask / 255.
raw_mask = (mask > 0.5).astype(np.uint8)
raw_mask = cv2.resize(raw_mask, dsize=(width, height), interpolation=cv2.INTER_NEAREST)
return raw_mask
def load_edge(self, flow):
gray_flow = (flow[:, :, 0] ** 2 + flow[:, :, 1] ** 2) ** 0.5
factor = gray_flow.max()
gray_flow = gray_flow / factor
flow_rgb = flow2rgb(flow)
flow_gray = cv2.cvtColor(flow_rgb, cv2.COLOR_RGB2GRAY)
return gray_flow, canny(flow_gray, sigma=self.sigma, mask=None, low_threshold=self.low_threshold,
high_threshold=self.high_threshold).astype(np.float)
def to_tensor(self, data_list):
"""
Args:
data_list: a numpy.array list
Returns: a torch.tensor list with the None entries removed
"""
keys = list(data_list.keys())
for key in keys:
if data_list[key] is None or data_list[key] == []:
data_list.pop(key)
else:
item = data_list[key]
if not isinstance(item, list):
if len(item.shape) == 2:
item = item[:, :, np.newaxis]
item = torch.from_numpy(np.transpose(item, (2, 0, 1))).float()
else:
item = np.stack(item, axis=0)
if len(item.shape) == 3:
item = item[:, :, :, np.newaxis]
item = torch.from_numpy(np.transpose(item, (3, 0, 1, 2))).float()
data_list[key] = item
return data_list