|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .update import BasicUpdateBlock, SmallUpdateBlock |
|
from .extractor import BasicEncoder, SmallEncoder |
|
from .corr import CorrBlock, AlternateCorrBlock |
|
from .utils.utils import bilinear_sampler, coords_grid, upflow8 |
|
|
|
try: |
|
autocast = torch.cuda.amp.autocast |
|
except: |
|
|
|
class autocast: |
|
def __init__(self, enabled): |
|
pass |
|
def __enter__(self): |
|
pass |
|
def __exit__(self, *args): |
|
pass |
|
|
|
|
|
class RAFT(nn.Module): |
|
def __init__(self, args): |
|
super(RAFT, self).__init__() |
|
self.args = args |
|
|
|
if args.small: |
|
self.hidden_dim = hdim = 96 |
|
self.context_dim = cdim = 64 |
|
args.corr_levels = 4 |
|
args.corr_radius = 3 |
|
|
|
else: |
|
self.hidden_dim = hdim = 128 |
|
self.context_dim = cdim = 128 |
|
args.corr_levels = 4 |
|
args.corr_radius = 4 |
|
|
|
'''if 'dropout' not in args._get_kwargs(): |
|
args.dropout = 0 |
|
|
|
if 'alternate_corr' not in args._get_kwargs(): |
|
args.alternate_corr = False''' |
|
args.dropout = 0 |
|
args.alternate_corr = False |
|
|
|
|
|
if args.small: |
|
self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout) |
|
self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout) |
|
self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim) |
|
|
|
else: |
|
self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout) |
|
self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout) |
|
self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim) |
|
|
|
|
|
def freeze_bn(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.BatchNorm2d): |
|
m.eval() |
|
|
|
def initialize_flow(self, img): |
|
""" Flow is represented as difference between two coordinate grids flow = coords1 - coords0""" |
|
N, C, H, W = img.shape |
|
coords0 = coords_grid(N, H//8, W//8).to(img.device) |
|
coords1 = coords_grid(N, H//8, W//8).to(img.device) |
|
|
|
|
|
return coords0, coords1 |
|
|
|
def upsample_flow(self, flow, mask): |
|
""" Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """ |
|
N, _, H, W = flow.shape |
|
mask = mask.view(N, 1, 9, 8, 8, H, W) |
|
mask = torch.softmax(mask, dim=2) |
|
|
|
up_flow = F.unfold(8 * flow, [3,3], padding=1) |
|
up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) |
|
|
|
up_flow = torch.sum(mask * up_flow, dim=2) |
|
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) |
|
return up_flow.reshape(N, 2, 8*H, 8*W) |
|
|
|
|
|
def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False): |
|
""" Estimate optical flow between pair of frames """ |
|
|
|
image1 = 2 * (image1 / 255.0) - 1.0 |
|
image2 = 2 * (image2 / 255.0) - 1.0 |
|
|
|
image1 = image1.contiguous() |
|
image2 = image2.contiguous() |
|
|
|
hdim = self.hidden_dim |
|
cdim = self.context_dim |
|
|
|
|
|
with autocast(enabled=self.args.mixed_precision): |
|
fmap1, fmap2 = self.fnet([image1, image2]) |
|
|
|
fmap1 = fmap1.float() |
|
fmap2 = fmap2.float() |
|
if self.args.alternate_corr: |
|
corr_fn = CorrBlockAlternate(fmap1, fmap2, radius=self.args.corr_radius) |
|
else: |
|
corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius) |
|
|
|
|
|
with autocast(enabled=self.args.mixed_precision): |
|
cnet = self.cnet(image1) |
|
net, inp = torch.split(cnet, [hdim, cdim], dim=1) |
|
net = torch.tanh(net) |
|
inp = torch.relu(inp) |
|
|
|
coords0, coords1 = self.initialize_flow(image1) |
|
|
|
if flow_init is not None: |
|
coords1 = coords1 + flow_init |
|
|
|
flow_predictions = [] |
|
for itr in range(iters): |
|
coords1 = coords1.detach() |
|
corr = corr_fn(coords1) |
|
|
|
flow = coords1 - coords0 |
|
with autocast(enabled=self.args.mixed_precision): |
|
net, up_mask, delta_flow = self.update_block(net, inp, corr, flow) |
|
|
|
|
|
coords1 = coords1 + delta_flow |
|
|
|
|
|
if up_mask is None: |
|
flow_up = upflow8(coords1 - coords0) |
|
else: |
|
flow_up = self.upsample_flow(coords1 - coords0, up_mask) |
|
|
|
flow_predictions.append(flow_up) |
|
|
|
if test_mode: |
|
return coords1 - coords0, flow_up |
|
|
|
return flow_predictions |
|
|