|
import numpy as np |
|
import random |
|
import math |
|
from PIL import Image |
|
|
|
import cv2 |
|
cv2.setNumThreads(0) |
|
cv2.ocl.setUseOpenCL(False) |
|
|
|
import torch |
|
from torchvision.transforms import ColorJitter |
|
import torch.nn.functional as F |
|
|
|
|
|
class FlowAugmentor: |
|
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True): |
|
|
|
|
|
self.crop_size = crop_size |
|
self.min_scale = min_scale |
|
self.max_scale = max_scale |
|
self.spatial_aug_prob = 0.8 |
|
self.stretch_prob = 0.8 |
|
self.max_stretch = 0.2 |
|
|
|
|
|
self.do_flip = do_flip |
|
self.h_flip_prob = 0.5 |
|
self.v_flip_prob = 0.1 |
|
|
|
|
|
self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5/3.14) |
|
self.asymmetric_color_aug_prob = 0.2 |
|
self.eraser_aug_prob = 0.5 |
|
|
|
def color_transform(self, img1, img2): |
|
""" Photometric augmentation """ |
|
|
|
|
|
if np.random.rand() < self.asymmetric_color_aug_prob: |
|
img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8) |
|
img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8) |
|
|
|
|
|
else: |
|
image_stack = np.concatenate([img1, img2], axis=0) |
|
image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) |
|
img1, img2 = np.split(image_stack, 2, axis=0) |
|
|
|
return img1, img2 |
|
|
|
def eraser_transform(self, img1, img2, bounds=[50, 100]): |
|
""" Occlusion augmentation """ |
|
|
|
ht, wd = img1.shape[:2] |
|
if np.random.rand() < self.eraser_aug_prob: |
|
mean_color = np.mean(img2.reshape(-1, 3), axis=0) |
|
for _ in range(np.random.randint(1, 3)): |
|
x0 = np.random.randint(0, wd) |
|
y0 = np.random.randint(0, ht) |
|
dx = np.random.randint(bounds[0], bounds[1]) |
|
dy = np.random.randint(bounds[0], bounds[1]) |
|
img2[y0:y0+dy, x0:x0+dx, :] = mean_color |
|
|
|
return img1, img2 |
|
|
|
def spatial_transform(self, img1, img2, flow): |
|
|
|
ht, wd = img1.shape[:2] |
|
min_scale = np.maximum( |
|
(self.crop_size[0] + 8) / float(ht), |
|
(self.crop_size[1] + 8) / float(wd)) |
|
|
|
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) |
|
scale_x = scale |
|
scale_y = scale |
|
if np.random.rand() < self.stretch_prob: |
|
scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) |
|
scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) |
|
|
|
scale_x = np.clip(scale_x, min_scale, None) |
|
scale_y = np.clip(scale_y, min_scale, None) |
|
|
|
if np.random.rand() < self.spatial_aug_prob: |
|
|
|
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) |
|
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) |
|
flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) |
|
flow = flow * [scale_x, scale_y] |
|
|
|
if self.do_flip: |
|
if np.random.rand() < self.h_flip_prob: |
|
img1 = img1[:, ::-1] |
|
img2 = img2[:, ::-1] |
|
flow = flow[:, ::-1] * [-1.0, 1.0] |
|
|
|
if np.random.rand() < self.v_flip_prob: |
|
img1 = img1[::-1, :] |
|
img2 = img2[::-1, :] |
|
flow = flow[::-1, :] * [1.0, -1.0] |
|
|
|
y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0]) |
|
x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1]) |
|
|
|
img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
|
|
return img1, img2, flow |
|
|
|
def __call__(self, img1, img2, flow): |
|
img1, img2 = self.color_transform(img1, img2) |
|
img1, img2 = self.eraser_transform(img1, img2) |
|
img1, img2, flow = self.spatial_transform(img1, img2, flow) |
|
|
|
img1 = np.ascontiguousarray(img1) |
|
img2 = np.ascontiguousarray(img2) |
|
flow = np.ascontiguousarray(flow) |
|
|
|
return img1, img2, flow |
|
|
|
class SparseFlowAugmentor: |
|
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False): |
|
|
|
self.crop_size = crop_size |
|
self.min_scale = min_scale |
|
self.max_scale = max_scale |
|
self.spatial_aug_prob = 0.8 |
|
self.stretch_prob = 0.8 |
|
self.max_stretch = 0.2 |
|
|
|
|
|
self.do_flip = do_flip |
|
self.h_flip_prob = 0.5 |
|
self.v_flip_prob = 0.1 |
|
|
|
|
|
self.photo_aug = ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3/3.14) |
|
self.asymmetric_color_aug_prob = 0.2 |
|
self.eraser_aug_prob = 0.5 |
|
|
|
def color_transform(self, img1, img2): |
|
image_stack = np.concatenate([img1, img2], axis=0) |
|
image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) |
|
img1, img2 = np.split(image_stack, 2, axis=0) |
|
return img1, img2 |
|
|
|
def eraser_transform(self, img1, img2): |
|
ht, wd = img1.shape[:2] |
|
if np.random.rand() < self.eraser_aug_prob: |
|
mean_color = np.mean(img2.reshape(-1, 3), axis=0) |
|
for _ in range(np.random.randint(1, 3)): |
|
x0 = np.random.randint(0, wd) |
|
y0 = np.random.randint(0, ht) |
|
dx = np.random.randint(50, 100) |
|
dy = np.random.randint(50, 100) |
|
img2[y0:y0+dy, x0:x0+dx, :] = mean_color |
|
|
|
return img1, img2 |
|
|
|
def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0): |
|
ht, wd = flow.shape[:2] |
|
coords = np.meshgrid(np.arange(wd), np.arange(ht)) |
|
coords = np.stack(coords, axis=-1) |
|
|
|
coords = coords.reshape(-1, 2).astype(np.float32) |
|
flow = flow.reshape(-1, 2).astype(np.float32) |
|
valid = valid.reshape(-1).astype(np.float32) |
|
|
|
coords0 = coords[valid>=1] |
|
flow0 = flow[valid>=1] |
|
|
|
ht1 = int(round(ht * fy)) |
|
wd1 = int(round(wd * fx)) |
|
|
|
coords1 = coords0 * [fx, fy] |
|
flow1 = flow0 * [fx, fy] |
|
|
|
xx = np.round(coords1[:,0]).astype(np.int32) |
|
yy = np.round(coords1[:,1]).astype(np.int32) |
|
|
|
v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1) |
|
xx = xx[v] |
|
yy = yy[v] |
|
flow1 = flow1[v] |
|
|
|
flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32) |
|
valid_img = np.zeros([ht1, wd1], dtype=np.int32) |
|
|
|
flow_img[yy, xx] = flow1 |
|
valid_img[yy, xx] = 1 |
|
|
|
return flow_img, valid_img |
|
|
|
def spatial_transform(self, img1, img2, flow, valid): |
|
|
|
|
|
ht, wd = img1.shape[:2] |
|
min_scale = np.maximum( |
|
(self.crop_size[0] + 1) / float(ht), |
|
(self.crop_size[1] + 1) / float(wd)) |
|
|
|
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) |
|
scale_x = np.clip(scale, min_scale, None) |
|
scale_y = np.clip(scale, min_scale, None) |
|
|
|
if np.random.rand() < self.spatial_aug_prob: |
|
|
|
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) |
|
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) |
|
flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y) |
|
|
|
if self.do_flip: |
|
if np.random.rand() < 0.5: |
|
img1 = img1[:, ::-1] |
|
img2 = img2[:, ::-1] |
|
flow = flow[:, ::-1] * [-1.0, 1.0] |
|
valid = valid[:, ::-1] |
|
|
|
margin_y = 20 |
|
margin_x = 50 |
|
|
|
y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y) |
|
x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x) |
|
|
|
y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0]) |
|
x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1]) |
|
|
|
img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] |
|
return img1, img2, flow, valid |
|
|
|
|
|
def __call__(self, img1, img2, flow, valid): |
|
img1, img2 = self.color_transform(img1, img2) |
|
img1, img2 = self.eraser_transform(img1, img2) |
|
img1, img2, flow, valid = self.spatial_transform(img1, img2, flow, valid) |
|
|
|
img1 = np.ascontiguousarray(img1) |
|
img2 = np.ascontiguousarray(img2) |
|
flow = np.ascontiguousarray(flow) |
|
valid = np.ascontiguousarray(valid) |
|
|
|
return img1, img2, flow, valid |
|
|