oguzakif's picture
init repo
d4b77ac
raw
history blame
7.1 kB
# Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization
# MIT License
#
# Copyright (c) 2018 Tom Runia
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to conditions.
#
# Author: Tom Runia
# Date Created: 2018-08-03
import numpy as np
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:,:,0]
v = flow_uv[:,:,1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
return flow_uv_to_colors(u, v, convert_to_bgr)
def flow_to_image_noNorm(flow_uvs, clip_flow=None, convert_to_bgr=False):
"""
flow_uvs is a list that accomodates lots of flows
All the flows in flow_uvs are normalized by the maximum value of in all the flows of flow_uvs
"""
maximum_value = 0
for flow_uv in flow_uvs:
u = flow_uv[:, :, 0]
v = flow_uv[:, :, 1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
maximum_value = max(maximum_value, rad_max)
assert maximum_value > 0, 'Maximum value must be greater than 0'
flow_colors = []
for flow_uv in flow_uvs:
u = flow_uv[:, :, 0]
v = flow_uv[:, :, 1]
epsilon = 1e-5
u = u / (maximum_value + epsilon)
v = v / (maximum_value + epsilon)
flow_color = flow_uv_to_colors(u, v, convert_to_bgr)
flow_colors.append(flow_color)
return flow_colors
if __name__ == '__main__':
# cvbase.read_flow test
import cvbase
import cv2
import os
import glob
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--flow_path', type=str, default='.')
parser.add_argument('--out_path', type=str, default='.')
args = parser.parse_args()
flow_path = args.flow_path
out_path = args.out_path
videos = os.listdir(flow_path)
video_nums = len(videos)
v = 0
for video in videos:
v += 1
# forward flow visualization
forward_flows = sorted(glob.glob(os.path.join(flow_path, video, 'forward_flo', '*.flo')))
backward_flows = sorted(glob.glob(os.path.join(flow_path, video, 'backward_flo', '*.flo')))
assert len(forward_flows) == len(backward_flows), 'Unmatched number of flows, forward flow is {}, backward flow is {}'.format(len(forward_flows), len(backward_flows))
forward_out_path = os.path.join(out_path, video, 'forward_flo')
backward_out_path = os.path.join(out_path, video, 'backward_flo')
if not os.path.exists(forward_out_path):
os.makedirs(forward_out_path)
if not os.path.exists(backward_out_path):
os.makedirs(backward_out_path)
for i in range(len(forward_flows)):
forward_flow_data = cvbase.read_flow(forward_flows[i])
backward_flow_data = cvbase.read_flow(backward_flows[i])
forward_flow_image = flow_to_image(forward_flow_data, convert_to_bgr=True)
backward_flow_image = flow_to_image(backward_flow_data, convert_to_bgr=True)
cv2.imwrite(os.path.join(forward_out_path, '{:05d}.png'.format(i)), forward_flow_image)
cv2.imwrite(os.path.join(backward_out_path, '{:05d}.png'.format(i)), backward_flow_image)
print('[{}]/[{}] video {} has been processed'.format(v, video_nums, video))