|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
def make_colorwheel(): |
|
""" |
|
Generates a color wheel for optical flow visualization as presented in: |
|
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) |
|
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf |
|
|
|
Code follows the original C++ source code of Daniel Scharstein. |
|
Code follows the the Matlab source code of Deqing Sun. |
|
|
|
Returns: |
|
np.ndarray: Color wheel |
|
""" |
|
|
|
RY = 15 |
|
YG = 6 |
|
GC = 4 |
|
CB = 11 |
|
BM = 13 |
|
MR = 6 |
|
|
|
ncols = RY + YG + GC + CB + BM + MR |
|
colorwheel = np.zeros((ncols, 3)) |
|
col = 0 |
|
|
|
|
|
colorwheel[0:RY, 0] = 255 |
|
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) |
|
col = col+RY |
|
|
|
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) |
|
colorwheel[col:col+YG, 1] = 255 |
|
col = col+YG |
|
|
|
colorwheel[col:col+GC, 1] = 255 |
|
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) |
|
col = col+GC |
|
|
|
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) |
|
colorwheel[col:col+CB, 2] = 255 |
|
col = col+CB |
|
|
|
colorwheel[col:col+BM, 2] = 255 |
|
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) |
|
col = col+BM |
|
|
|
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) |
|
colorwheel[col:col+MR, 0] = 255 |
|
return colorwheel |
|
|
|
|
|
def flow_uv_to_colors(u, v, convert_to_bgr=False): |
|
""" |
|
Applies the flow color wheel to (possibly clipped) flow components u and v. |
|
|
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
|
|
Args: |
|
u (np.ndarray): Input horizontal flow of shape [H,W] |
|
v (np.ndarray): Input vertical flow of shape [H,W] |
|
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. |
|
|
|
Returns: |
|
np.ndarray: Flow visualization image of shape [H,W,3] |
|
""" |
|
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) |
|
colorwheel = make_colorwheel() |
|
ncols = colorwheel.shape[0] |
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
a = np.arctan2(-v, -u)/np.pi |
|
fk = (a+1) / 2*(ncols-1) |
|
k0 = np.floor(fk).astype(np.int32) |
|
k1 = k0 + 1 |
|
k1[k1 == ncols] = 0 |
|
f = fk - k0 |
|
for i in range(colorwheel.shape[1]): |
|
tmp = colorwheel[:,i] |
|
col0 = tmp[k0] / 255.0 |
|
col1 = tmp[k1] / 255.0 |
|
col = (1-f)*col0 + f*col1 |
|
idx = (rad <= 1) |
|
col[idx] = 1 - rad[idx] * (1-col[idx]) |
|
col[~idx] = col[~idx] * 0.75 |
|
|
|
ch_idx = 2-i if convert_to_bgr else i |
|
flow_image[:,:,ch_idx] = np.floor(255 * col) |
|
return flow_image |
|
|
|
|
|
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False): |
|
""" |
|
Expects a two dimensional flow image of shape. |
|
|
|
Args: |
|
flow_uv (np.ndarray): Flow UV image of shape [H,W,2] |
|
clip_flow (float, optional): Clip maximum of flow values. Defaults to None. |
|
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. |
|
|
|
Returns: |
|
np.ndarray: Flow visualization image of shape [H,W,3] |
|
""" |
|
assert flow_uv.ndim == 3, 'input flow must have three dimensions' |
|
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' |
|
if clip_flow is not None: |
|
flow_uv = np.clip(flow_uv, 0, clip_flow) |
|
u = flow_uv[:,:,0] |
|
v = flow_uv[:,:,1] |
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
rad_max = np.max(rad) |
|
epsilon = 1e-5 |
|
u = u / (rad_max + epsilon) |
|
v = v / (rad_max + epsilon) |
|
return flow_uv_to_colors(u, v, convert_to_bgr) |
|
|
|
|
|
def flow_to_image_noNorm(flow_uvs, clip_flow=None, convert_to_bgr=False): |
|
""" |
|
flow_uvs is a list that accomodates lots of flows |
|
All the flows in flow_uvs are normalized by the maximum value of in all the flows of flow_uvs |
|
""" |
|
maximum_value = 0 |
|
for flow_uv in flow_uvs: |
|
u = flow_uv[:, :, 0] |
|
v = flow_uv[:, :, 1] |
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
rad_max = np.max(rad) |
|
maximum_value = max(maximum_value, rad_max) |
|
assert maximum_value > 0, 'Maximum value must be greater than 0' |
|
flow_colors = [] |
|
for flow_uv in flow_uvs: |
|
u = flow_uv[:, :, 0] |
|
v = flow_uv[:, :, 1] |
|
epsilon = 1e-5 |
|
u = u / (maximum_value + epsilon) |
|
v = v / (maximum_value + epsilon) |
|
flow_color = flow_uv_to_colors(u, v, convert_to_bgr) |
|
flow_colors.append(flow_color) |
|
return flow_colors |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
import cvbase |
|
import cv2 |
|
import os |
|
import glob |
|
import argparse |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--flow_path', type=str, default='.') |
|
parser.add_argument('--out_path', type=str, default='.') |
|
args = parser.parse_args() |
|
flow_path = args.flow_path |
|
out_path = args.out_path |
|
videos = os.listdir(flow_path) |
|
video_nums = len(videos) |
|
v = 0 |
|
for video in videos: |
|
v += 1 |
|
|
|
forward_flows = sorted(glob.glob(os.path.join(flow_path, video, 'forward_flo', '*.flo'))) |
|
backward_flows = sorted(glob.glob(os.path.join(flow_path, video, 'backward_flo', '*.flo'))) |
|
assert len(forward_flows) == len(backward_flows), 'Unmatched number of flows, forward flow is {}, backward flow is {}'.format(len(forward_flows), len(backward_flows)) |
|
forward_out_path = os.path.join(out_path, video, 'forward_flo') |
|
backward_out_path = os.path.join(out_path, video, 'backward_flo') |
|
if not os.path.exists(forward_out_path): |
|
os.makedirs(forward_out_path) |
|
if not os.path.exists(backward_out_path): |
|
os.makedirs(backward_out_path) |
|
for i in range(len(forward_flows)): |
|
forward_flow_data = cvbase.read_flow(forward_flows[i]) |
|
backward_flow_data = cvbase.read_flow(backward_flows[i]) |
|
forward_flow_image = flow_to_image(forward_flow_data, convert_to_bgr=True) |
|
backward_flow_image = flow_to_image(backward_flow_data, convert_to_bgr=True) |
|
cv2.imwrite(os.path.join(forward_out_path, '{:05d}.png'.format(i)), forward_flow_image) |
|
cv2.imwrite(os.path.join(backward_out_path, '{:05d}.png'.format(i)), backward_flow_image) |
|
print('[{}]/[{}] video {} has been processed'.format(v, video_nums, video)) |