|
import os |
|
import sys |
|
import time |
|
import math |
|
import torch.nn.functional as F |
|
from datetime import datetime |
|
import random |
|
import logging |
|
from collections import OrderedDict |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
from torchvision.utils import make_grid |
|
from shutil import get_terminal_size |
|
import torchvision.utils as vutils |
|
from shutil import copyfile |
|
import torchvision.transforms as transforms |
|
|
|
import yaml |
|
|
|
try: |
|
from yaml import CLoader as Loader, CDumper as Dumper |
|
except ImportError: |
|
from yaml import Loader, Dumper |
|
|
|
|
|
def OrderedYaml(): |
|
'''yaml orderedDict support''' |
|
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG |
|
|
|
def dict_representer(dumper, data): |
|
return dumper.represent_dict(data.items()) |
|
|
|
def dict_constructor(loader, node): |
|
return OrderedDict(loader.construct_pairs(node)) |
|
|
|
Dumper.add_representer(OrderedDict, dict_representer) |
|
Loader.add_constructor(_mapping_tag, dict_constructor) |
|
return Loader, Dumper |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_timestamp(): |
|
return datetime.now().strftime('%y%m%d-%H%M%S') |
|
|
|
|
|
def mkdir(path): |
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
|
|
def mkdirs(paths): |
|
if isinstance(paths, str): |
|
print('path is : ', paths) |
|
mkdir(paths) |
|
else: |
|
for path in paths: |
|
print('path is : {}'.format(path)) |
|
mkdir(path) |
|
|
|
|
|
def mkdir_and_rename(path): |
|
new_name = None |
|
if os.path.exists(path): |
|
new_name = path + '_archived_' + get_timestamp() |
|
logger = logging.getLogger('base') |
|
logger.info('Path already exists. Rename it to [{:s}]'.format(new_name)) |
|
os.rename(path, new_name) |
|
os.makedirs(path) |
|
return new_name |
|
|
|
|
|
def set_random_seed(seed): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False): |
|
'''set up logger''' |
|
lg = logging.getLogger(logger_name) |
|
formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s', |
|
datefmt='%y-%m-%d %H:%M:%S') |
|
lg.setLevel(level) |
|
if tofile: |
|
log_file = os.path.join(root, phase + '_{}.log'.format(get_timestamp())) |
|
fh = logging.FileHandler(log_file, mode='w') |
|
fh.setFormatter(formatter) |
|
lg.addHandler(fh) |
|
if screen: |
|
sh = logging.StreamHandler() |
|
sh.setFormatter(formatter) |
|
lg.addHandler(sh) |
|
|
|
|
|
|
|
|
|
|
|
def crop_border(img_list, crop_border): |
|
"""Crop borders of images |
|
Args: |
|
img_list (list [Numpy]): HWC |
|
crop_border (int): crop border for each end of height and weight |
|
|
|
Returns: |
|
(list [Numpy]): cropped image list |
|
""" |
|
if crop_border == 0: |
|
return img_list |
|
else: |
|
return [v[crop_border:-crop_border, crop_border:-crop_border] for v in img_list] |
|
|
|
|
|
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): |
|
''' |
|
Converts a torch Tensor into an image Numpy array |
|
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order |
|
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) |
|
''' |
|
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) |
|
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) |
|
n_dim = tensor.dim() |
|
if n_dim == 4: |
|
n_img = len(tensor) |
|
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() |
|
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) |
|
elif n_dim == 3: |
|
img_np = tensor.numpy() |
|
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) |
|
elif n_dim == 2: |
|
img_np = tensor.numpy() |
|
else: |
|
raise TypeError( |
|
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) |
|
if out_type == np.uint8: |
|
img_np = (img_np * 255.0).round() |
|
|
|
return img_np.astype(out_type) |
|
|
|
|
|
def save_img(img, img_path, mode='RGB'): |
|
cv2.imwrite(img_path, img) |
|
|
|
|
|
def DUF_downsample(x, scale=4): |
|
"""Downsamping with Gaussian kernel used in the DUF official code |
|
|
|
Args: |
|
x (Tensor, [B, T, C, H, W]): frames to be downsampled. |
|
scale (int): downsampling factor: 2 | 3 | 4. |
|
""" |
|
|
|
assert scale in [2, 3, 4], 'Scale [{}] is not supported'.format(scale) |
|
|
|
def gkern(kernlen=13, nsig=1.6): |
|
import scipy.ndimage.filters as fi |
|
inp = np.zeros((kernlen, kernlen)) |
|
|
|
inp[kernlen // 2, kernlen // 2] = 1 |
|
|
|
return fi.gaussian_filter(inp, nsig) |
|
|
|
B, T, C, H, W = x.size() |
|
x = x.view(-1, 1, H, W) |
|
pad_w, pad_h = 6 + scale * 2, 6 + scale * 2 |
|
r_h, r_w = 0, 0 |
|
if scale == 3: |
|
r_h = 3 - (H % 3) |
|
r_w = 3 - (W % 3) |
|
x = F.pad(x, [pad_w, pad_w + r_w, pad_h, pad_h + r_h], 'reflect') |
|
|
|
gaussian_filter = torch.from_numpy(gkern(13, 0.4 * scale)).type_as(x).unsqueeze(0).unsqueeze(0) |
|
x = F.conv2d(x, gaussian_filter, stride=scale) |
|
x = x[:, :, 2:-2, 2:-2] |
|
x = x.view(B, T, C, x.size(2), x.size(3)) |
|
return x |
|
|
|
|
|
def single_forward(model, inp): |
|
"""PyTorch model forward (single test), it is just a simple warpper |
|
Args: |
|
model (PyTorch model) |
|
inp (Tensor): inputs defined by the model |
|
|
|
Returns: |
|
output (Tensor): outputs of the model. float, in CPU |
|
""" |
|
with torch.no_grad(): |
|
model_output = model(inp) |
|
if isinstance(model_output, list) or isinstance(model_output, tuple): |
|
output = model_output[0] |
|
else: |
|
output = model_output |
|
output = output.data.float().cpu() |
|
return output |
|
|
|
|
|
def flipx4_forward(model, inp): |
|
"""Flip testing with X4 self ensemble, i.e., normal, flip H, flip W, flip H and W |
|
Args: |
|
model (PyTorch model) |
|
inp (Tensor): inputs defined by the model |
|
|
|
Returns: |
|
output (Tensor): outputs of the model. float, in CPU |
|
""" |
|
|
|
output_f = single_forward(model, inp) |
|
|
|
|
|
output = single_forward(model, torch.flip(inp, (-1,))) |
|
output_f = output_f + torch.flip(output, (-1,)) |
|
|
|
output = single_forward(model, torch.flip(inp, (-2,))) |
|
output_f = output_f + torch.flip(output, (-2,)) |
|
|
|
output = single_forward(model, torch.flip(inp, (-2, -1))) |
|
output_f = output_f + torch.flip(output, (-2, -1)) |
|
|
|
return output_f / 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ProgressBar(object): |
|
'''A progress bar which can print the progress |
|
modified from https://github.com/hellock/cvbase/blob/master/cvbase/progress.py |
|
''' |
|
|
|
def __init__(self, task_num=0, bar_width=50, start=True): |
|
self.task_num = task_num |
|
max_bar_width = self._get_max_bar_width() |
|
self.bar_width = (bar_width if bar_width <= max_bar_width else max_bar_width) |
|
self.completed = 0 |
|
if start: |
|
self.start() |
|
|
|
def _get_max_bar_width(self): |
|
terminal_width, _ = get_terminal_size() |
|
max_bar_width = min(int(terminal_width * 0.6), terminal_width - 50) |
|
if max_bar_width < 10: |
|
print('terminal width is too small ({}), please consider widen the terminal for better ' |
|
'progressbar visualization'.format(terminal_width)) |
|
max_bar_width = 10 |
|
return max_bar_width |
|
|
|
def start(self): |
|
if self.task_num > 0: |
|
sys.stdout.write('[{}] 0/{}, elapsed: 0s, ETA:\n{}\n'.format( |
|
' ' * self.bar_width, self.task_num, 'Start...')) |
|
else: |
|
sys.stdout.write('completed: 0, elapsed: 0s') |
|
sys.stdout.flush() |
|
self.start_time = time.time() |
|
|
|
def update(self, msg='In progress...'): |
|
self.completed += 1 |
|
elapsed = time.time() - self.start_time |
|
fps = self.completed / elapsed |
|
if self.task_num > 0: |
|
percentage = self.completed / float(self.task_num) |
|
eta = int(elapsed * (1 - percentage) / percentage + 0.5) |
|
mark_width = int(self.bar_width * percentage) |
|
bar_chars = '>' * mark_width + '-' * (self.bar_width - mark_width) |
|
sys.stdout.write('\033[2F') |
|
sys.stdout.write('\033[J') |
|
sys.stdout.write('[{}] {}/{}, {:.1f} task/s, elapsed: {}s, ETA: {:5}s\n{}\n'.format( |
|
bar_chars, self.completed, self.task_num, fps, int(elapsed + 0.5), eta, msg)) |
|
else: |
|
sys.stdout.write('completed: {}, elapsed: {}s, {:.1f} tasks/s'.format( |
|
self.completed, int(elapsed + 0.5), fps)) |
|
sys.stdout.flush() |
|
|
|
|
|
|
|
def find_free_port(): |
|
import socket |
|
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) |
|
sock.bind(("", 0)) |
|
port = sock.getsockname()[1] |
|
sock.close() |
|
return port |
|
|
|
|
|
|
|
def visualize_image(result, outputDir, epoch, mode, video_name, minData=0): |
|
|
|
targetDir = os.path.join(outputDir, str(epoch), video_name) |
|
if not os.path.exists(targetDir): |
|
os.makedirs(targetDir) |
|
if minData == -1: |
|
result = (result + 1) / 2 |
|
vutils.save_image(result, os.path.join(targetDir, '{}.png'.format(mode))) |
|
elif minData == 0: |
|
vutils.save_image(result, os.path.join(targetDir, '{}.png'.format(mode))) |
|
else: |
|
raise ValueError('minValue {} is not supported'.format(minData)) |
|
|
|
|
|
def get_learning_rate(optimizer): |
|
lr = [] |
|
for param_group in optimizer.param_groups: |
|
lr += [param_group['lr']] |
|
return lr |
|
|
|
|
|
def adjust_learning_rate(optimizer, target_lr): |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] = target_lr |
|
|
|
|
|
def save_checkpoint(epoch, model, discriminator, current_step, schedulers, dist_scheduler, optimizers, dist_optimizer, save_path, is_best, monitor, monitor_value, |
|
config): |
|
|
|
if isinstance(model, torch.nn.DataParallel) or isinstance(model, torch.nn.parallel.DistributedDataParallel): |
|
model_state = model.module.state_dict() |
|
discriminator_state = discriminator.module.state_dict() |
|
else: |
|
model_state = model.state_dict() |
|
discriminator_state = discriminator.state_dict() |
|
state = { |
|
'epoch': epoch, |
|
'iteration': current_step, |
|
'model_state_dict': model_state, |
|
'discriminator_state_dict': discriminator_state, |
|
'optimizer_state_dict': optimizers.state_dict(), |
|
'dist_optim_state_dict': dist_optimizer.state_dict(), |
|
'scheduler_state_dict': schedulers.state_dict(), |
|
'dist_scheduler_state_dict': dist_scheduler.state_dict(), |
|
'is_best': is_best, |
|
'config': config, |
|
} |
|
|
|
best_str = '-best-so-far' if is_best else '' |
|
monitor_str = '-{}:{}'.format(monitor, monitor_value) if monitor_value else '' |
|
if not os.path.exists(os.path.join(save_path, 'best')): |
|
os.makedirs(os.path.join(save_path, 'best')) |
|
file_name = os.path.join(save_path, 'checkpoint-epoch:{}{}{}.pth.tar'.format(epoch, monitor_str, best_str)) |
|
torch.save(state, file_name) |
|
if is_best: |
|
copyfile(src=file_name, dst=os.path.join(save_path, 'best', |
|
'checkpoint-epoch:{}{}{}.pth.tar'.format(epoch, monitor_str, |
|
best_str))) |
|
|
|
|
|
def save_dist_checkpoint(epoch, model, dist, current_step, schedulers, schedulersD, optimizers, optimizersD, save_path, |
|
is_best, monitor, monitor_value, |
|
config): |
|
|
|
if isinstance(model, torch.nn.DataParallel) or isinstance(model, torch.nn.parallel.DistributedDataParallel): |
|
model_state = model.module.state_dict() |
|
dist_state = dist.module.state_dict() |
|
else: |
|
model_state = model.state_dict() |
|
dist_state = dist.state_dict() |
|
state = { |
|
'epoch': epoch, |
|
'iteration': current_step, |
|
'model_state_dict': model_state, |
|
'dist_state_dict': dist_state, |
|
'optimizer_state_dict': optimizers.state_dict(), |
|
'optimizerD_state_dict': optimizersD.state_dict(), |
|
'scheduler_state_dict': schedulers.state_dict(), |
|
'schedulerD_state_dict': schedulersD.state_dict(), |
|
'is_best': is_best, |
|
'config': config |
|
} |
|
|
|
best_str = '-best-so-far' if is_best else '' |
|
monitor_str = '-{}:{}'.format(monitor, monitor_value) if monitor_value else '' |
|
if not os.path.exists(os.path.join(save_path, 'best')): |
|
os.makedirs(os.path.join(save_path, 'best')) |
|
file_name = os.path.join(save_path, 'checkpoint-epoch:{}{}{}.pth.tar'.format(epoch, monitor_str, best_str)) |
|
torch.save(state, file_name) |
|
if is_best: |
|
copyfile(src=file_name, dst=os.path.join(save_path, 'best', |
|
'checkpoint-epoch:{}{}{}.pth.tar'.format(epoch, monitor_str, |
|
best_str))) |
|
|
|
|
|
def poisson_blend(input, output, mask): |
|
""" |
|
* inputs: |
|
- input (torch.Tensor, required) |
|
Input tensor of Completion Network, whose shape = (N, 3, H, W). |
|
- output (torch.Tensor, required) |
|
Output tensor of Completion Network, whose shape = (N, 3, H, W). |
|
- mask (torch.Tensor, required) |
|
Input mask tensor of Completion Network, whose shape = (N, 1, H, W). |
|
* returns: |
|
Output image tensor of shape (N, 3, H, W) inpainted with poisson image editing method. |
|
from lizuka et al: https://github.com/otenim/GLCIC-PyTorch/blob/caf9bebe667fba0aebbd041918f2d8128f59ec62/utils.py |
|
""" |
|
input = input.clone().cpu() |
|
output = output.clone().cpu() |
|
mask = mask.clone().cpu() |
|
mask = torch.cat((mask, mask, mask), dim=1) |
|
num_samples = input.shape[0] |
|
ret = [] |
|
for i in range(num_samples): |
|
dstimg = transforms.functional.to_pil_image(input[i]) |
|
dstimg = np.array(dstimg)[:, :, [2, 1, 0]] |
|
srcimg = transforms.functional.to_pil_image(output[i]) |
|
srcimg = np.array(srcimg)[:, :, [2, 1, 0]] |
|
msk = transforms.functional.to_pil_image(mask[i]) |
|
msk = np.array(msk)[:, :, [2, 1, 0]] |
|
|
|
xs, ys = [], [] |
|
for j in range(msk.shape[0]): |
|
for k in range(msk.shape[1]): |
|
if msk[j, k, 0] == 255: |
|
ys.append(j) |
|
xs.append(k) |
|
xmin, xmax = min(xs), max(xs) |
|
ymin, ymax = min(ys), max(ys) |
|
center = ((xmax + xmin) // 2, (ymax + ymin) // 2) |
|
dstimg = cv2.inpaint(dstimg, msk[:, :, 0], 1, cv2.INPAINT_TELEA) |
|
out = cv2.seamlessClone(srcimg, dstimg, msk, center, cv2.NORMAL_CLONE) |
|
out = out[:, :, [2, 1, 0]] |
|
out = transforms.functional.to_tensor(out) |
|
out = torch.unsqueeze(out, dim=0) |
|
ret.append(out) |
|
ret = torch.cat(ret, dim=0) |
|
return ret |
|
|