Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# SiamMask | |
# Licensed under The MIT License | |
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn) | |
# -------------------------------------------------------- | |
from pycocotools.coco import COCO | |
from os.path import join | |
import json | |
dataDir = '.' | |
for data_subset in ['val2017', 'train2017']: | |
dataset = dict() | |
annFile = '{}/annotations/instances_{}.json'.format(dataDir, data_subset) | |
coco = COCO(annFile) | |
n_imgs = len(coco.imgs) | |
for n, img_id in enumerate(coco.imgs): | |
print('subset: {} image id: {:04d} / {:04d}'.format(data_subset, n, n_imgs)) | |
img = coco.loadImgs(img_id)[0] | |
annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None) | |
anns = coco.loadAnns(annIds) | |
crop_base_path = join(data_subset, img['file_name'].split('/')[-1].split('.')[0]) | |
if len(anns) > 0: | |
dataset[crop_base_path] = dict() | |
for track_id, ann in enumerate(anns): | |
rect = ann['bbox'] | |
if rect[2] <= 0 or rect[3] <= 0: # lead nan error in cls. | |
continue | |
bbox = [rect[0], rect[1], rect[0]+rect[2]-1, rect[1]+rect[3]-1] # x1,y1,x2,y2 | |
dataset[crop_base_path]['{:02d}'.format(track_id)] = {'000000': bbox} | |
print('save json (dataset), please wait 20 seconds~') | |
json.dump(dataset, open('{}.json'.format(data_subset), 'w'), indent=4, sort_keys=True) | |
print('done!') | |