|
|
|
|
|
|
|
|
|
|
|
from os.path import join, isdir |
|
from os import mkdir, makedirs |
|
import cv2 |
|
import numpy as np |
|
import glob |
|
import xml.etree.ElementTree as ET |
|
from concurrent import futures |
|
import time |
|
import sys |
|
|
|
|
|
|
|
def printProgress(iteration, total, prefix='', suffix='', decimals=1, barLength=100): |
|
""" |
|
Call in a loop to create terminal progress bar |
|
@params: |
|
iteration - Required : current iteration (Int) |
|
total - Required : total iterations (Int) |
|
prefix - Optional : prefix string (Str) |
|
suffix - Optional : suffix string (Str) |
|
decimals - Optional : positive number of decimals in percent complete (Int) |
|
barLength - Optional : character length of bar (Int) |
|
""" |
|
formatStr = "{0:." + str(decimals) + "f}" |
|
percents = formatStr.format(100 * (iteration / float(total))) |
|
filledLength = int(round(barLength * iteration / float(total))) |
|
bar = '' * filledLength + '-' * (barLength - filledLength) |
|
sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix)), |
|
if iteration == total: |
|
sys.stdout.write('\x1b[2K\r') |
|
sys.stdout.flush() |
|
|
|
|
|
def crop_hwc(image, bbox, out_sz, padding=(0, 0, 0)): |
|
a = (out_sz - 1) / (bbox[2] - bbox[0]) |
|
b = (out_sz - 1) / (bbox[3] - bbox[1]) |
|
c = -a * bbox[0] |
|
d = -b * bbox[1] |
|
mapping = np.array([[a, 0, c], |
|
[0, b, d]]).astype(np.float) |
|
crop = cv2.warpAffine(image, mapping, (out_sz, out_sz), borderMode=cv2.BORDER_CONSTANT, borderValue=padding) |
|
return crop |
|
|
|
|
|
def pos_s_2_bbox(pos, s): |
|
return [pos[0] - s / 2, pos[1] - s / 2, pos[0] + s / 2, pos[1] + s / 2] |
|
|
|
|
|
def crop_like_SiamFC(image, bbox, context_amount=0.5, exemplar_size=127, instanc_size=255, padding=(0, 0, 0)): |
|
target_pos = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.] |
|
target_size = [bbox[2] - bbox[0], bbox[3] - bbox[1]] |
|
wc_z = target_size[1] + context_amount * sum(target_size) |
|
hc_z = target_size[0] + context_amount * sum(target_size) |
|
s_z = np.sqrt(wc_z * hc_z) |
|
scale_z = exemplar_size / s_z |
|
d_search = (instanc_size - exemplar_size) / 2 |
|
pad = d_search / scale_z |
|
s_x = s_z + 2 * pad |
|
|
|
z = crop_hwc(image, pos_s_2_bbox(target_pos, s_z), exemplar_size, padding) |
|
x = crop_hwc(image, pos_s_2_bbox(target_pos, s_x), instanc_size, padding) |
|
return z, x |
|
|
|
|
|
def crop_like_SiamFCx(image, bbox, context_amount=0.5, exemplar_size=127, instanc_size=255, padding=(0, 0, 0)): |
|
target_pos = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.] |
|
target_size = [bbox[2] - bbox[0], bbox[3] - bbox[1]] |
|
wc_z = target_size[1] + context_amount * sum(target_size) |
|
hc_z = target_size[0] + context_amount * sum(target_size) |
|
s_z = np.sqrt(wc_z * hc_z) |
|
scale_z = exemplar_size / s_z |
|
d_search = (instanc_size - exemplar_size) / 2 |
|
pad = d_search / scale_z |
|
s_x = s_z + 2 * pad |
|
|
|
x = crop_hwc(image, pos_s_2_bbox(target_pos, s_x), instanc_size, padding) |
|
return x |
|
|
|
|
|
def crop_xml(xml, sub_set_crop_path, instanc_size=511): |
|
xmltree = ET.parse(xml) |
|
objects = xmltree.findall('object') |
|
|
|
frame_crop_base_path = join(sub_set_crop_path, xml.split('/')[-1].split('.')[0]) |
|
if not isdir(frame_crop_base_path): makedirs(frame_crop_base_path) |
|
|
|
img_path = xml.replace('xml', 'JPEG').replace('Annotations', 'Data') |
|
|
|
im = cv2.imread(img_path) |
|
avg_chans = np.mean(im, axis=(0, 1)) |
|
|
|
for id, object_iter in enumerate(objects): |
|
bndbox = object_iter.find('bndbox') |
|
bbox = [int(bndbox.find('xmin').text), int(bndbox.find('ymin').text), |
|
int(bndbox.find('xmax').text), int(bndbox.find('ymax').text)] |
|
|
|
|
|
|
|
|
|
x = crop_like_SiamFCx(im, bbox, instanc_size=instanc_size, padding=avg_chans) |
|
cv2.imwrite(join(frame_crop_base_path, '{:06d}.{:02d}.x.jpg'.format(0, id)), x) |
|
|
|
|
|
def main(instanc_size=511, num_threads=24): |
|
crop_path = './crop{:d}'.format(instanc_size) |
|
if not isdir(crop_path): mkdir(crop_path) |
|
VID_base_path = './ILSVRC2015' |
|
ann_base_path = join(VID_base_path, 'Annotations/DET/train/') |
|
sub_sets = ('ILSVRC2013_train', 'ILSVRC2013_train_extra0', 'ILSVRC2013_train_extra1', 'ILSVRC2013_train_extra2', 'ILSVRC2013_train_extra3', 'ILSVRC2013_train_extra4', 'ILSVRC2013_train_extra5', 'ILSVRC2013_train_extra6', 'ILSVRC2013_train_extra7', 'ILSVRC2013_train_extra8', 'ILSVRC2013_train_extra9', 'ILSVRC2013_train_extra10', 'ILSVRC2014_train_0000', 'ILSVRC2014_train_0001','ILSVRC2014_train_0002','ILSVRC2014_train_0003','ILSVRC2014_train_0004','ILSVRC2014_train_0005','ILSVRC2014_train_0006') |
|
for sub_set in sub_sets: |
|
sub_set_base_path = join(ann_base_path, sub_set) |
|
if 'ILSVRC2013_train' == sub_set: |
|
xmls = sorted(glob.glob(join(sub_set_base_path, '*', '*.xml'))) |
|
else: |
|
xmls = sorted(glob.glob(join(sub_set_base_path, '*.xml'))) |
|
|
|
n_imgs = len(xmls) |
|
sub_set_crop_path = join(crop_path, sub_set) |
|
with futures.ProcessPoolExecutor(max_workers=num_threads) as executor: |
|
fs = [executor.submit(crop_xml, xml, sub_set_crop_path, instanc_size) for xml in xmls] |
|
for i, f in enumerate(futures.as_completed(fs)): |
|
printProgress(i, n_imgs, prefix=sub_set, suffix='Done ', barLength=80) |
|
|
|
|
|
if __name__ == '__main__': |
|
since = time.time() |
|
main(int(sys.argv[1]), int(sys.argv[2])) |
|
time_elapsed = time.time() - since |
|
print('Total complete in {:.0f}m {:.0f}s'.format( |
|
time_elapsed // 60, time_elapsed % 60)) |
|
|