oguzakif's picture
init repo
d4b77ac
raw
history blame
3.4 kB
from models.siammask import SiamMask
from models.features import MultiStageFeature
from models.rpn import RPN, DepthCorr
from models.mask import Mask
import torch
import torch.nn as nn
from utils.load_helper import load_pretrain
from resnet import resnet50
class ResDownS(nn.Module):
def __init__(self, inplane, outplane):
super(ResDownS, self).__init__()
self.downsample = nn.Sequential(
nn.Conv2d(inplane, outplane, kernel_size=1, bias=False),
nn.BatchNorm2d(outplane))
def forward(self, x):
x = self.downsample(x)
if x.size(3) < 20:
l = 4
r = -4
x = x[:, :, l:r, l:r]
return x
class ResDown(MultiStageFeature):
def __init__(self, pretrain=False):
super(ResDown, self).__init__()
self.features = resnet50(layer3=True, layer4=False)
if pretrain:
load_pretrain(self.features, 'resnet.model')
self.downsample = ResDownS(1024, 256)
self.layers = [self.downsample, self.features.layer2, self.features.layer3]
self.train_nums = [1, 3]
self.change_point = [0, 0.5]
self.unfix(0.0)
def param_groups(self, start_lr, feature_mult=1):
lr = start_lr * feature_mult
def _params(module, mult=1):
params = list(filter(lambda x:x.requires_grad, module.parameters()))
if len(params):
return [{'params': params, 'lr': lr * mult}]
else:
return []
groups = []
groups += _params(self.downsample)
groups += _params(self.features, 0.1)
return groups
def forward(self, x):
output = self.features(x)
p3 = self.downsample(output[1])
return p3
class UP(RPN):
def __init__(self, anchor_num=5, feature_in=256, feature_out=256):
super(UP, self).__init__()
self.anchor_num = anchor_num
self.feature_in = feature_in
self.feature_out = feature_out
self.cls_output = 2 * self.anchor_num
self.loc_output = 4 * self.anchor_num
self.cls = DepthCorr(feature_in, feature_out, self.cls_output)
self.loc = DepthCorr(feature_in, feature_out, self.loc_output)
def forward(self, z_f, x_f):
cls = self.cls(z_f, x_f)
loc = self.loc(z_f, x_f)
return cls, loc
class MaskCorr(Mask):
def __init__(self, oSz=63):
super(MaskCorr, self).__init__()
self.oSz = oSz
self.mask = DepthCorr(256, 256, self.oSz**2)
def forward(self, z, x):
return self.mask(z, x)
class Custom(SiamMask):
def __init__(self, pretrain=False, **kwargs):
super(Custom, self).__init__(**kwargs)
self.features = ResDown(pretrain=pretrain)
self.rpn_model = UP(anchor_num=self.anchor_num, feature_in=256, feature_out=256)
self.mask_model = MaskCorr()
def template(self, template):
self.zf = self.features(template)
def track(self, search):
search = self.features(search)
rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, search)
return rpn_pred_cls, rpn_pred_loc
def track_mask(self, search):
search = self.features(search)
rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, search)
pred_mask = self.mask(self.zf, search)
return rpn_pred_cls, rpn_pred_loc, pred_mask