|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.autograd import Variable |
|
from SiamMask.utils.anchors import Anchors |
|
|
|
|
|
class SiamMask(nn.Module): |
|
def __init__(self, anchors=None, o_sz=127, g_sz=127): |
|
super(SiamMask, self).__init__() |
|
self.anchors = anchors |
|
self.anchor_num = len(self.anchors["ratios"]) * len(self.anchors["scales"]) |
|
self.anchor = Anchors(anchors) |
|
self.features = None |
|
self.rpn_model = None |
|
self.mask_model = None |
|
self.o_sz = o_sz |
|
self.g_sz = g_sz |
|
self.upSample = nn.UpsamplingBilinear2d(size=[g_sz, g_sz]) |
|
|
|
self.all_anchors = None |
|
|
|
def set_all_anchors(self, image_center, size): |
|
|
|
if not self.anchor.generate_all_anchors(image_center, size): |
|
return |
|
all_anchors = self.anchor.all_anchors[1] |
|
self.all_anchors = torch.from_numpy(all_anchors).float().cuda() |
|
self.all_anchors = [self.all_anchors[i] for i in range(4)] |
|
|
|
def feature_extractor(self, x): |
|
return self.features(x) |
|
|
|
def rpn(self, template, search): |
|
pred_cls, pred_loc = self.rpn_model(template, search) |
|
return pred_cls, pred_loc |
|
|
|
def mask(self, template, search): |
|
pred_mask = self.mask_model(template, search) |
|
return pred_mask |
|
|
|
def _add_rpn_loss(self, label_cls, label_loc, lable_loc_weight, label_mask, label_mask_weight, |
|
rpn_pred_cls, rpn_pred_loc, rpn_pred_mask): |
|
rpn_loss_cls = select_cross_entropy_loss(rpn_pred_cls, label_cls) |
|
|
|
rpn_loss_loc = weight_l1_loss(rpn_pred_loc, label_loc, lable_loc_weight) |
|
|
|
rpn_loss_mask, iou_m, iou_5, iou_7 = select_mask_logistic_loss(rpn_pred_mask, label_mask, label_mask_weight) |
|
|
|
return rpn_loss_cls, rpn_loss_loc, rpn_loss_mask, iou_m, iou_5, iou_7 |
|
|
|
def run(self, template, search, softmax=False): |
|
""" |
|
run network |
|
""" |
|
template_feature = self.feature_extractor(template) |
|
feature, search_feature = self.features.forward_all(search) |
|
rpn_pred_cls, rpn_pred_loc = self.rpn(template_feature, search_feature) |
|
corr_feature = self.mask_model.mask.forward_corr(template_feature, search_feature) |
|
rpn_pred_mask = self.refine_model(feature, corr_feature) |
|
|
|
if softmax: |
|
rpn_pred_cls = self.softmax(rpn_pred_cls) |
|
return rpn_pred_cls, rpn_pred_loc, rpn_pred_mask, template_feature, search_feature |
|
|
|
def softmax(self, cls): |
|
b, a2, h, w = cls.size() |
|
cls = cls.view(b, 2, a2//2, h, w) |
|
cls = cls.permute(0, 2, 3, 4, 1).contiguous() |
|
cls = F.log_softmax(cls, dim=4) |
|
return cls |
|
|
|
def forward(self, input): |
|
""" |
|
:param input: dict of input with keys of: |
|
'template': [b, 3, h1, w1], input template image. |
|
'search': [b, 3, h2, w2], input search image. |
|
'label_cls':[b, max_num_gts, 5] or None(self.training==False), |
|
each gt contains x1,y1,x2,y2,class. |
|
:return: dict of loss, predict, accuracy |
|
""" |
|
template = input['template'] |
|
search = input['search'] |
|
if self.training: |
|
label_cls = input['label_cls'] |
|
label_loc = input['label_loc'] |
|
lable_loc_weight = input['label_loc_weight'] |
|
label_mask = input['label_mask'] |
|
label_mask_weight = input['label_mask_weight'] |
|
|
|
rpn_pred_cls, rpn_pred_loc, rpn_pred_mask, template_feature, search_feature = \ |
|
self.run(template, search, softmax=self.training) |
|
|
|
outputs = dict() |
|
|
|
outputs['predict'] = [rpn_pred_loc, rpn_pred_cls, rpn_pred_mask, template_feature, search_feature] |
|
|
|
if self.training: |
|
rpn_loss_cls, rpn_loss_loc, rpn_loss_mask, iou_acc_mean, iou_acc_5, iou_acc_7 = \ |
|
self._add_rpn_loss(label_cls, label_loc, lable_loc_weight, label_mask, label_mask_weight, |
|
rpn_pred_cls, rpn_pred_loc, rpn_pred_mask) |
|
outputs['losses'] = [rpn_loss_cls, rpn_loss_loc, rpn_loss_mask] |
|
outputs['accuracy'] = [iou_acc_mean, iou_acc_5, iou_acc_7] |
|
|
|
return outputs |
|
|
|
def template(self, z): |
|
self.zf = self.feature_extractor(z) |
|
cls_kernel, loc_kernel = self.rpn_model.template(self.zf) |
|
return cls_kernel, loc_kernel |
|
|
|
def track(self, x, cls_kernel=None, loc_kernel=None, softmax=False): |
|
xf = self.feature_extractor(x) |
|
rpn_pred_cls, rpn_pred_loc = self.rpn_model.track(xf, cls_kernel, loc_kernel) |
|
if softmax: |
|
rpn_pred_cls = self.softmax(rpn_pred_cls) |
|
return rpn_pred_cls, rpn_pred_loc |
|
|
|
|
|
def get_cls_loss(pred, label, select): |
|
if select.nelement() == 0: return pred.sum()*0. |
|
pred = torch.index_select(pred, 0, select) |
|
label = torch.index_select(label, 0, select) |
|
|
|
return F.nll_loss(pred, label) |
|
|
|
|
|
def select_cross_entropy_loss(pred, label): |
|
pred = pred.view(-1, 2) |
|
label = label.view(-1) |
|
pos = Variable(label.data.eq(1).nonzero().squeeze()).cuda() |
|
neg = Variable(label.data.eq(0).nonzero().squeeze()).cuda() |
|
|
|
loss_pos = get_cls_loss(pred, label, pos) |
|
loss_neg = get_cls_loss(pred, label, neg) |
|
return loss_pos * 0.5 + loss_neg * 0.5 |
|
|
|
|
|
def weight_l1_loss(pred_loc, label_loc, loss_weight): |
|
""" |
|
:param pred_loc: [b, 4k, h, w] |
|
:param label_loc: [b, 4k, h, w] |
|
:param loss_weight: [b, k, h, w] |
|
:return: loc loss value |
|
""" |
|
b, _, sh, sw = pred_loc.size() |
|
pred_loc = pred_loc.view(b, 4, -1, sh, sw) |
|
diff = (pred_loc - label_loc).abs() |
|
diff = diff.sum(dim=1).view(b, -1, sh, sw) |
|
loss = diff * loss_weight |
|
return loss.sum().div(b) |
|
|
|
|
|
def select_mask_logistic_loss(p_m, mask, weight, o_sz=63, g_sz=127): |
|
weight = weight.view(-1) |
|
pos = Variable(weight.data.eq(1).nonzero().squeeze()) |
|
if pos.nelement() == 0: return p_m.sum() * 0, p_m.sum() * 0, p_m.sum() * 0, p_m.sum() * 0 |
|
|
|
if len(p_m.shape) == 4: |
|
p_m = p_m.permute(0, 2, 3, 1).contiguous().view(-1, 1, o_sz, o_sz) |
|
p_m = torch.index_select(p_m, 0, pos) |
|
p_m = nn.UpsamplingBilinear2d(size=[g_sz, g_sz])(p_m) |
|
p_m = p_m.view(-1, g_sz * g_sz) |
|
else: |
|
p_m = torch.index_select(p_m, 0, pos) |
|
|
|
mask_uf = F.unfold(mask, (g_sz, g_sz), padding=0, stride=8) |
|
mask_uf = torch.transpose(mask_uf, 1, 2).contiguous().view(-1, g_sz * g_sz) |
|
|
|
mask_uf = torch.index_select(mask_uf, 0, pos) |
|
loss = F.soft_margin_loss(p_m, mask_uf) |
|
iou_m, iou_5, iou_7 = iou_measure(p_m, mask_uf) |
|
return loss, iou_m, iou_5, iou_7 |
|
|
|
|
|
def iou_measure(pred, label): |
|
pred = pred.ge(0) |
|
mask_sum = pred.eq(1).add(label.eq(1)) |
|
intxn = torch.sum(mask_sum == 2, dim=1).float() |
|
union = torch.sum(mask_sum > 0, dim=1).float() |
|
iou = intxn/union |
|
return torch.mean(iou), (torch.sum(iou > 0.5).float()/iou.shape[0]), (torch.sum(iou > 0.7).float()/iou.shape[0]) |
|
|
|
|
|
if __name__ == "__main__": |
|
p_m = torch.randn(4, 63*63, 25, 25) |
|
cls = torch.randn(4, 1, 25, 25) > 0.9 |
|
mask = torch.randn(4, 1, 255, 255) * 2 - 1 |
|
|
|
loss = select_mask_logistic_loss(p_m, mask, cls) |
|
print(loss) |
|
|