oguzakif's picture
upload fgt and siammask repos
4983ef5
raw
history blame
9.24 kB
from PIL import Image
import gradio as gr
from FGT_codes.tool.video_inpainting import video_inpainting
from SiamMask.tools.test import *
from SiamMask.experiments.siammask_sharp.custom import Custom
from types import SimpleNamespace
import torch
import numpy as np
import torchvision
import cv2
import sys
from os.path import exists, join, basename, splitext
import os
project_name = './video-object-remover'
sys.path.append(project_name)
sys.path.append(join(project_name, 'SiamMask',
'experiments', 'siammask_sharp'))
sys.path.append(join(project_name, 'SiamMask', 'models'))
sys.path.append(join(project_name, 'SiamMask'))
exp_path = join(project_name, 'SiamMask/experiments/siammask_sharp')
pretrained_path1 = join(exp_path, 'SiamMask_DAVIS.pth')
sys.path.append(join(project_name, 'FGT_codes'))
sys.path.append(join(project_name, 'FGT_codes', 'tool'))
sys.path.append(join(project_name, 'FGT_codes', 'LAFC', 'flowCheckPoint'))
sys.path.append(join(project_name, 'FGT_codes', 'LAFC', 'checkpoint'))
sys.path.append(join(project_name, 'FGT_codes', 'FGT', 'checkpoint'))
sys.path.append(join(project_name, 'FGT_codes', 'LAFC',
'flowCheckPoint', 'raft-things.pth'))
torch.set_grad_enabled(False)
# init SiamMask
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
cfg = load_config(SimpleNamespace(config=join(exp_path, 'config_davis.json')))
siammask = Custom(anchors=cfg['anchors'])
siammask = load_pretrain(siammask, pretrained_path1)
siammask = siammask.eval().to(device)
# constants
object_x = 0
object_y = 0
object_width = 0
object_height = 0
original_frame_list = []
mask_list = []
parser = argparse.ArgumentParser()
parser.add_argument('--opt', default='configs/object_removal.yaml',
help='Please select your config file for inference')
# video completion
parser.add_argument('--mode', default='object_removal', choices=[
'object_removal', 'watermark_removal', 'video_extrapolation'], help="modes: object_removal / video_extrapolation")
parser.add_argument(
'--path', default='/myData/davis_resized/walking', help="dataset for evaluation")
parser.add_argument(
'--path_mask', default='/myData/dilateAnnotations_4/walking', help="mask for object removal")
parser.add_argument(
'--outroot', default='quick_start/walking3', help="output directory")
parser.add_argument('--consistencyThres', dest='consistencyThres', default=5, type=float,
help='flow consistency error threshold')
parser.add_argument('--alpha', dest='alpha', default=0.1, type=float)
parser.add_argument('--Nonlocal', dest='Nonlocal',
default=False, type=bool)
# RAFT
parser.add_argument(
'--raft_model', default='../LAFC/flowCheckPoint/raft-things.pth', help="restore checkpoint")
parser.add_argument('--small', action='store_true', help='use small model')
parser.add_argument('--mixed_precision',
action='store_true', help='use mixed precision')
parser.add_argument('--alternate_corr', action='store_true',
help='use efficent correlation implementation')
# LAFC
parser.add_argument('--lafc_ckpts', type=str, default='../LAFC/checkpoint')
# FGT
parser.add_argument('--fgt_ckpts', type=str, default='../FGT/checkpoint')
# extrapolation
parser.add_argument('--H_scale', dest='H_scale', default=2,
type=float, help='H extrapolation scale')
parser.add_argument('--W_scale', dest='W_scale', default=2,
type=float, help='W extrapolation scale')
# Image basic information
parser.add_argument('--imgH', type=int, default=256)
parser.add_argument('--imgW', type=int, default=432)
parser.add_argument('--flow_mask_dilates', type=int, default=8)
parser.add_argument('--frame_dilates', type=int, default=0)
parser.add_argument('--gpu', type=int, default=0)
# FGT inference parameters
parser.add_argument('--step', type=int, default=10)
parser.add_argument('--num_ref', type=int, default=-1)
parser.add_argument('--neighbor_stride', type=int, default=5)
# visualization
parser.add_argument('--vis_flows', action='store_true',
help='Visualize the initialized flows')
parser.add_argument('--vis_completed_flows',
action='store_true', help='Visualize the completed flows')
parser.add_argument('--vis_prop', action='store_true',
help='Visualize the frames after stage-I filling (flow guided content propagation)')
parser.add_argument('--vis_frame', action='store_true',
help='Visualize frames')
args = parser.parse_args()
def getBoundaries(mask):
if mask is None:
return 0, 0, 0, 0
indexes = np.where((mask == [255, 255, 255]).all(axis=2))
print(indexes)
x1 = min(indexes[1])
y1 = min(indexes[0])
x2 = max(indexes[1])
y2 = max(indexes[0])
return x1, y1, (x2-x1), (y2-y1)
def track_and_mask(vid, original_frame, masked_frame):
x, y, w, h = getBoundaries(masked_frame)
f = 0
video_capture = cv2.VideoCapture()
if video_capture.open(vid):
width, height = int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(
video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = video_capture.get(cv2.CAP_PROP_FPS)
# can't write out mp4, so try to write into an AVI file
video_writer = cv2.VideoWriter(
"output.avi", cv2.VideoWriter_fourcc(*'MP42'), fps, (width, height))
video_writer2 = cv2.VideoWriter(
"output_mask.avi", cv2.VideoWriter_fourcc(*'MP42'), fps, (width, height))
while video_capture.isOpened():
ret, frame = video_capture.read()
if not ret:
break
# frame = cv2.resize(frame, (w - w % 8, h - h % 8))
if f == 0:
target_pos = np.array([x + w / 2, y + h / 2])
target_sz = np.array([w, h])
# init tracker
state = siamese_init(
frame, target_pos, target_sz, siammask, cfg['hp'], device=device)
else:
# track
state = siamese_track(
state, frame, mask_enable=True, refine_enable=True, device=device)
location = state['ploygon'].flatten()
mask = state['mask'] > state['p'].seg_thr
frame[:, :, 2] = (mask > 0) * 255 + \
(mask == 0) * frame[:, :, 2]
mask = mask.astype(np.uint8) # convert to an unsigned byte
mask = mask * 255
mask_list.append(mask)
cv2.polylines(frame, [np.int0(location).reshape(
(-1, 1, 2))], True, (0, 255, 0), 3)
original_frame_list.append(frame)
mask_list.append(mask)
video_writer.write(frame)
video_writer2.write(mask)
f = f + 1
video_capture.release()
video_writer.release()
video_writer2.release()
else:
print("can't open the given input video file!")
return "output.mp4"
def inpaint_video():
video_inpainting(args, original_frame_list, mask_list)
return "result.mp4"
def get_first_frame(video):
video_capture = cv2.VideoCapture()
if video_capture.open(video):
width, height = int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(
video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
if video_capture.isOpened():
ret, frame = video_capture.read()
RGB_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return RGB_frame
def drawRectangle(frame, mask):
x1, y1, x2, y2 = getBoundaries(mask)
return cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
def getStartEndPoints(mask):
if mask is None:
return 0, 0, 0, 0
indexes = np.where((mask == [255, 255, 255]).all(axis=2))
print(indexes)
x1 = min(indexes[1])
y1 = min(indexes[0])
x2 = max(indexes[1])
y2 = max(indexes[0])
return x1, y1, x2, y2
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
in_video = gr.Video()
with gr.Row():
first_frame = gr.ImageMask()
with gr.Row():
approve_mask = gr.Button(value="Approve Mask")
with gr.Column(scale=1):
with gr.Row():
original_image = gr.Image(interactive=False)
with gr.Row():
masked_image = gr.Image(interactive=False)
with gr.Column(scale=2):
out_video = gr.Video()
out_video_inpaint = gr.Video()
track_mask = gr.Button(value="Track and Mask")
inpaint = gr.Button(value="Inpaint")
in_video.change(fn=get_first_frame, inputs=[
in_video], outputs=[first_frame])
approve_mask.click(lambda x: [x['image'], x['mask']], first_frame, [
original_image, masked_image])
track_mask.click(fn=track_and_mask, inputs=[
in_video, original_image, masked_image], outputs=[out_video])
inpaint.click(fn=inpaint_video, outputs=[out_video_inpaint])
demo.launch(share=True, debug=True)