|
import numpy as np |
|
from skimage.metrics import peak_signal_noise_ratio as psnr |
|
from skimage.metrics import structural_similarity as ssim |
|
import cvbase |
|
import os |
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" |
|
|
|
|
|
def calculate_metrics(results_flow, gts_flow): |
|
""" |
|
|
|
Args: |
|
results_flow: inpainted optical flow with shape [b, h, w, c], numpy array |
|
gts_flow: ground truth optical flow with shape [b, h, w, c], numpy array |
|
|
|
Returns: PSNR, SSIM for flow images, and L1/L2 error for flow map |
|
|
|
""" |
|
B, H, W, C = results_flow.shape |
|
psnr_values, ssim_values, L1errors, L2errors = [], [], [], [] |
|
for i in range(B): |
|
result = results_flow[i] |
|
gt = gts_flow[i] |
|
result_img = cvbase.flow2rgb(result) |
|
gt_img = cvbase.flow2rgb(gt) |
|
residual = result - gt |
|
L1error = np.mean(np.abs(residual)) |
|
L2error = np.sum(residual ** 2) ** 0.5 / (H * W * C) |
|
psnr_value = psnr(result_img, gt_img) |
|
ssim_value = ssim(result_img, gt_img, multichannel=True) |
|
L1errors.append(L1error) |
|
L2errors.append(L2error) |
|
psnr_values.append(psnr_value) |
|
ssim_values.append(ssim_value) |
|
L1_value = np.mean(L1errors) |
|
L2_value = np.mean(L2errors) |
|
psnr_value = np.mean(psnr_values) |
|
ssim_value = np.mean(ssim_values) |
|
|
|
return {'l1': L1_value, 'l2': L2_value, 'psnr': psnr_value, 'ssim': ssim_value} |
|
|