|
import cv2 |
|
import numpy as np |
|
|
|
|
|
def calculate_ssim(img1, img2): |
|
C1 = (0.01 * 255)**2 |
|
C2 = (0.03 * 255)**2 |
|
|
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
kernel = cv2.getGaussianKernel(11, 1.5) |
|
window = np.outer(kernel, kernel.transpose()) |
|
|
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] |
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] |
|
mu1_sq = mu1**2 |
|
mu2_sq = mu2**2 |
|
mu1_mu2 = mu1 * mu2 |
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq |
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq |
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * |
|
(sigma1_sq + sigma2_sq + C2)) |
|
return ssim_map.mean() |
|
|
|
|
|
def ssim(img1, img2): |
|
'''calculate SSIM |
|
the same outputs as MATLAB's |
|
img1, img2: [0, 255] |
|
''' |
|
if not img1.shape == img2.shape: |
|
raise ValueError('Input images must have the same dimensions.') |
|
if img1.ndim == 2: |
|
return calculate_ssim(img1, img2) |
|
elif img1.ndim == 3: |
|
if img1.shape[2] == 3: |
|
ssims = [] |
|
for i in range(3): |
|
ssims.append(calculate_ssim(img1[:, :, i], img2[:, :, i])) |
|
return np.array(ssims).mean() |
|
elif img1.shape[2] == 1: |
|
return calculate_ssim(np.squeeze(img1), np.squeeze(img2)) |
|
else: |
|
raise ValueError('Wrong input image dimensions.') |