|
from .utils.network_blocks import * |
|
from .utils.network_blocks_2d import * |
|
|
|
|
|
class BaseNetwork(nn.Module): |
|
def __init__(self, conv_type): |
|
super(BaseNetwork, self).__init__() |
|
self.conv_type = conv_type |
|
if conv_type == 'gated': |
|
self.ConvBlock = GatedConv |
|
self.DeconvBlock = GatedDeconv |
|
self.ConvBlock2d = GatedConv2d |
|
self.DeconvBlock2d = GatedDeconv2d |
|
if conv_type == 'partial': |
|
self.ConvBlock = PartialConv |
|
self.DeconvBlock = PartialDeconv |
|
self.ConvBlock2d = PartialConv2d |
|
self.DeconvBlock2d = PartialDeconv2d |
|
if conv_type == 'vanilla': |
|
self.ConvBlock = VanillaConv |
|
self.DeconvBlock = VanillaDeconv |
|
self.ConvBlock2d = VanillaConv2d |
|
self.DeconvBlock2d = VanillaDeconv2d |
|
|
|
def init_weights(self, init_type='kaiming', gain=0.02): |
|
''' |
|
initialize network's weights |
|
init_type: normal | xavier | kaiming | orthogonal |
|
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39 |
|
''' |
|
|
|
def init_func(m): |
|
classname = m.__class__.__name__ |
|
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): |
|
if init_type == 'normal': |
|
nn.init.normal_(m.weight.data, 0.0, gain) |
|
elif init_type == 'xavier': |
|
nn.init.xavier_normal_(m.weight.data, gain=gain) |
|
elif init_type == 'kaiming': |
|
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') |
|
elif init_type == 'orthogonal': |
|
nn.init.orthogonal_(m.weight.data, gain=gain) |
|
|
|
if hasattr(m, 'bias') and m.bias is not None: |
|
nn.init.constant_(m.bias.data, 0.0) |
|
|
|
elif classname.find('BatchNorm2d') != -1: |
|
nn.init.normal_(m.weight.data, 1.0, gain) |
|
nn.init.constant_(m.bias.data, 0.0) |
|
|
|
self.apply(init_func) |
|
|