|
|
|
|
|
|
|
|
|
|
|
import cv2 |
|
import numpy as np |
|
from os.path import join, isdir |
|
from os import mkdir, makedirs |
|
from concurrent import futures |
|
import sys |
|
import time |
|
import json |
|
import glob |
|
|
|
|
|
|
|
def printProgress(iteration, total, prefix='', suffix='', decimals=1, barLength=100): |
|
""" |
|
Call in a loop to create terminal progress bar |
|
@params: |
|
iteration - Required : current iteration (Int) |
|
total - Required : total iterations (Int) |
|
prefix - Optional : prefix string (Str) |
|
suffix - Optional : suffix string (Str) |
|
decimals - Optional : positive number of decimals in percent complete (Int) |
|
barLength - Optional : character length of bar (Int) |
|
""" |
|
formatStr = "{0:." + str(decimals) + "f}" |
|
percents = formatStr.format(100 * (iteration / float(total))) |
|
filledLength = int(round(barLength * iteration / float(total))) |
|
bar = '' * filledLength + '-' * (barLength - filledLength) |
|
sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percents, '%', suffix)), |
|
if iteration == total: |
|
sys.stdout.write('\x1b[2K\r') |
|
sys.stdout.flush() |
|
|
|
|
|
def crop_hwc(image, bbox, out_sz, padding=(0, 0, 0)): |
|
a = (out_sz-1) / (bbox[2]-bbox[0]) |
|
b = (out_sz-1) / (bbox[3]-bbox[1]) |
|
c = -a * bbox[0] |
|
d = -b * bbox[1] |
|
mapping = np.array([[a, 0, c], |
|
[0, b, d]]).astype(np.float) |
|
crop = cv2.warpAffine(image, mapping, (out_sz, out_sz), borderMode=cv2.BORDER_CONSTANT, borderValue=padding) |
|
return crop |
|
|
|
|
|
def pos_s_2_bbox(pos, s): |
|
return [pos[0]-s/2, pos[1]-s/2, pos[0]+s/2, pos[1]+s/2] |
|
|
|
|
|
def crop_like_SiamFC(image, bbox, context_amount=0.5, exemplar_size=127, instanc_size=255, padding=(0, 0, 0)): |
|
target_pos = [(bbox[2]+bbox[0])/2., (bbox[3]+bbox[1])/2.] |
|
target_size = [bbox[2]-bbox[0], bbox[3]-bbox[1]] |
|
wc_z = target_size[1] + context_amount * sum(target_size) |
|
hc_z = target_size[0] + context_amount * sum(target_size) |
|
s_z = np.sqrt(wc_z * hc_z) |
|
scale_z = exemplar_size / s_z |
|
d_search = (instanc_size - exemplar_size) / 2 |
|
pad = d_search / scale_z |
|
s_x = s_z + 2 * pad |
|
|
|
z = crop_hwc(image, pos_s_2_bbox(target_pos, s_z), exemplar_size, padding) |
|
x = crop_hwc(image, pos_s_2_bbox(target_pos, s_x), instanc_size, padding) |
|
return z, x |
|
|
|
|
|
def crop_like_SiamFCx(image, bbox, context_amount=0.5, exemplar_size=127, instanc_size=255, padding=(0, 0, 0)): |
|
target_pos = [(bbox[2]+bbox[0])/2., (bbox[3]+bbox[1])/2.] |
|
target_size = [bbox[2]-bbox[0], bbox[3]-bbox[1]] |
|
wc_z = target_size[1] + context_amount * sum(target_size) |
|
hc_z = target_size[0] + context_amount * sum(target_size) |
|
s_z = np.sqrt(wc_z * hc_z) |
|
scale_z = exemplar_size / s_z |
|
d_search = (instanc_size - exemplar_size) / 2 |
|
pad = d_search / scale_z |
|
s_x = s_z + 2 * pad |
|
|
|
x = crop_hwc(image, pos_s_2_bbox(target_pos, s_x), instanc_size, padding) |
|
return x |
|
|
|
|
|
def crop_video(video, v, crop_path, data_path, instanc_size): |
|
video_crop_base_path = join(crop_path, video) |
|
if not isdir(video_crop_base_path): makedirs(video_crop_base_path) |
|
|
|
anno_base_path = join(data_path, 'Annotations') |
|
img_base_path = join(data_path, 'JPEGImages') |
|
|
|
for trackid, o in enumerate(list(v)): |
|
obj = v[o] |
|
for frame in obj: |
|
file_name = frame['file_name'] |
|
ann_path = join(anno_base_path, file_name+'.png') |
|
img_path = join(img_base_path, file_name+'.jpg') |
|
im = cv2.imread(img_path) |
|
label = cv2.imread(ann_path, 0) |
|
avg_chans = np.mean(im, axis=(0, 1)) |
|
bbox = frame['bbox'] |
|
bbox[2] += bbox[0] |
|
bbox[3] += bbox[1] |
|
x = crop_like_SiamFCx(im, bbox, instanc_size=instanc_size, padding=avg_chans) |
|
cv2.imwrite(join(video_crop_base_path, '{:06d}.{:02d}.x.jpg'.format(int(file_name.split('/')[-1]), trackid)), x) |
|
mask = crop_like_SiamFCx((label==int(o)).astype(np.float32), bbox, instanc_size=instanc_size, padding=0) |
|
mask = ((mask > 0.2)*255).astype(np.uint8) |
|
x[:,:,0] = mask + (mask == 0)*x[:,:,0] |
|
|
|
|
|
cv2.imwrite(join(video_crop_base_path, '{:06d}.{:02d}.m.png'.format(int(file_name.split('/')[-1]), trackid)), mask) |
|
|
|
|
|
def main(instanc_size=511, num_threads=12): |
|
dataDir = '.' |
|
crop_path = './crop{:d}'.format(instanc_size) |
|
if not isdir(crop_path): mkdir(crop_path) |
|
|
|
for dataType in ['train']: |
|
set_crop_base_path = join(crop_path, dataType) |
|
set_img_base_path = join(dataDir, dataType) |
|
|
|
annFile = '{}/instances_{}.json'.format(dataDir, dataType) |
|
ytb_vos = json.load(open(annFile,'r')) |
|
n_video = len(ytb_vos) |
|
with futures.ProcessPoolExecutor(max_workers=num_threads) as executor: |
|
fs = [executor.submit(crop_video, k, v, set_crop_base_path, set_img_base_path, instanc_size) |
|
for k,v in ytb_vos.items()] |
|
for i, f in enumerate(futures.as_completed(fs)): |
|
|
|
printProgress(i, n_video, prefix=dataType, suffix='Done ', barLength=40) |
|
print('done') |
|
|
|
|
|
if __name__ == '__main__': |
|
since = time.time() |
|
main(int(sys.argv[1]), int(sys.argv[2])) |
|
time_elapsed = time.time() - since |
|
print('Total complete in {:.0f}m {:.0f}s'.format( |
|
time_elapsed // 60, time_elapsed % 60)) |
|
|