|
from models.siamrpn import SiamRPN |
|
from models.features import MultiStageFeature |
|
from models.rpn import RPN, DepthCorr |
|
import torch.nn as nn |
|
from utils.load_helper import load_pretrain |
|
from resnet import resnet50 |
|
|
|
|
|
class ResDownS(nn.Module): |
|
def __init__(self, inplane, outplane): |
|
super(ResDownS, self).__init__() |
|
self.downsample = nn.Sequential( |
|
nn.Conv2d(inplane, outplane, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(outplane)) |
|
|
|
def forward(self, x): |
|
x = self.downsample(x) |
|
if x.size(3) < 20: |
|
l = 4 |
|
r = -4 |
|
x = x[:, :, l:r, l:r] |
|
return x |
|
|
|
|
|
class ResDown(MultiStageFeature): |
|
def __init__(self, pretrain=False): |
|
super(ResDown, self).__init__() |
|
self.features = resnet50(layer3=True, layer4=False) |
|
if pretrain: |
|
load_pretrain(self.features, 'resnet.model') |
|
|
|
self.downsample = ResDownS(1024, 256) |
|
self.layers = [self.downsample, self.features.layer2, self.features.layer3] |
|
self.train_nums = [1, 3] |
|
self.change_point = [0, 0.5] |
|
|
|
self.unfix(0.0) |
|
|
|
def param_groups(self, start_lr, feature_mult=1): |
|
lr = start_lr * feature_mult |
|
|
|
def _params(module, mult=1): |
|
params = list(filter(lambda x:x.requires_grad, module.parameters())) |
|
if len(params): |
|
return [{'params': params, 'lr': lr * mult}] |
|
else: |
|
return [] |
|
|
|
groups = [] |
|
groups += _params(self.downsample) |
|
groups += _params(self.features, 0.1) |
|
return groups |
|
|
|
def forward(self, x): |
|
output = self.features(x) |
|
p2, p3, p4 = output |
|
p3 = self.downsample(p3) |
|
return p3 |
|
|
|
|
|
class UP(RPN): |
|
def __init__(self, anchor_num=5, feature_in=256, feature_out=256): |
|
super(UP, self).__init__() |
|
|
|
self.anchor_num = anchor_num |
|
self.feature_in = feature_in |
|
self.feature_out = feature_out |
|
|
|
self.cls_output = 2 * self.anchor_num |
|
self.loc_output = 4 * self.anchor_num |
|
|
|
self.cls = DepthCorr(feature_in, feature_out, self.cls_output) |
|
self.loc = DepthCorr(feature_in, feature_out, self.loc_output) |
|
|
|
def forward(self, z_f, x_f): |
|
cls = self.cls(z_f, x_f) |
|
loc = self.loc(z_f, x_f) |
|
return cls, loc |
|
|
|
|
|
class Custom(SiamRPN): |
|
def __init__(self, pretrain=False, **kwargs): |
|
super(Custom, self).__init__(**kwargs) |
|
self.features = ResDown(pretrain=pretrain) |
|
self.rpn_model = UP(anchor_num=self.anchor_num, feature_in=256, feature_out=256) |
|
|
|
def template(self, template): |
|
self.zf = self.features(template) |
|
|
|
def track(self, search): |
|
search = self.features(search) |
|
rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, search) |
|
return rpn_pred_cls, rpn_pred_loc |
|
|