|
import torch.nn as nn |
|
import torch |
|
from torch.autograd import Variable |
|
import math |
|
import torch.utils.model_zoo as model_zoo |
|
from models.features import Features |
|
from utils.log_helper import log_once |
|
|
|
|
|
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', |
|
'resnet152'] |
|
|
|
|
|
model_urls = { |
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
|
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
|
} |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"3x3 convolution with padding" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(Features): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
|
|
padding = 2 - stride |
|
assert stride==1 or dilation==1, "stride and dilation must have one equals to zero at least" |
|
if dilation > 1: |
|
padding = dilation |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|
padding=padding, bias=False, dilation=dilation) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * 4) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
if out.size() != residual.size(): |
|
print(out.size(), residual.size()) |
|
out += residual |
|
|
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck_nop(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck_nop, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|
padding=0, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * 4) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
s = residual.size(3) |
|
residual = residual[:, :, 1:s-1, 1:s-1] |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, block, layers, layer4=False, layer3=False): |
|
self.inplanes = 64 |
|
super(ResNet, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
|
|
self.feature_size = 128 * block.expansion |
|
|
|
if layer3: |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) |
|
self.feature_size = (256 + 128) * block.expansion |
|
else: |
|
self.layer3 = lambda x:x |
|
|
|
if layer4: |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) |
|
self.feature_size = 512 * block.expansion |
|
else: |
|
self.layer4 = lambda x:x |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilation=1): |
|
downsample = None |
|
dd = dilation |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
if stride == 1 and dilation == 1: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
else: |
|
if dilation > 1: |
|
dd = dilation // 2 |
|
padding = dd |
|
else: |
|
dd = 1 |
|
padding = 0 |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=3, stride=stride, bias=False, |
|
padding=padding, dilation=dd), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
|
|
layers.append(block(self.inplanes, planes, stride, downsample, dilation=dd)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, dilation=dilation)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
x = self.maxpool(x) |
|
|
|
|
|
p1 = self.layer1(x) |
|
p2 = self.layer2(p1) |
|
p3 = self.layer3(p2) |
|
|
|
|
|
log_once("p3 {}".format(p3.size())) |
|
p4 = self.layer4(p3) |
|
|
|
return p2, p3, p4 |
|
|
|
|
|
class ResAdjust(nn.Module): |
|
def __init__(self, |
|
block=Bottleneck, |
|
out_channels=256, |
|
adjust_number=1, |
|
fuse_layers=[2,3,4]): |
|
super(ResAdjust, self).__init__() |
|
self.fuse_layers = set(fuse_layers) |
|
|
|
if 2 in self.fuse_layers: |
|
self.layer2 = self._make_layer(block, 128, 1, out_channels, adjust_number) |
|
if 3 in self.fuse_layers: |
|
self.layer3 = self._make_layer(block, 256, 2, out_channels, adjust_number) |
|
if 4 in self.fuse_layers: |
|
self.layer4 = self._make_layer(block, 512, 4, out_channels, adjust_number) |
|
|
|
self.feature_size = out_channels * len(self.fuse_layers) |
|
|
|
def _make_layer(self, block, plances, dilation, out, number=1): |
|
|
|
layers = [] |
|
|
|
for _ in range(number): |
|
layer = block(plances * block.expansion, plances, dilation=dilation) |
|
layers.append(layer) |
|
|
|
downsample = nn.Sequential( |
|
nn.Conv2d(plances * block.expansion, out, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(out) |
|
) |
|
layers.append(downsample) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, p2, p3, p4): |
|
|
|
outputs = [] |
|
|
|
if 2 in self.fuse_layers: |
|
outputs.append(self.layer2(p2)) |
|
if 3 in self.fuse_layers: |
|
outputs.append(self.layer3(p3)) |
|
if 4 in self.fuse_layers: |
|
outputs.append(self.layer4(p4)) |
|
|
|
return outputs |
|
|
|
|
|
def resnet18(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-18 model. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) |
|
return model |
|
|
|
|
|
def resnet34(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-34 model. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) |
|
return model |
|
|
|
|
|
def resnet50(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50 model. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) |
|
return model |
|
|
|
|
|
def resnet101(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-101 model. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) |
|
return model |
|
|
|
|
|
def resnet152(pretrained=False, **kwargs): |
|
"""Constructs a ResNet-152 model. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) |
|
return model |
|
|
|
|
|
if __name__ == '__main__': |
|
net = resnet50() |
|
print(net) |
|
net = net.cuda() |
|
|
|
var = torch.FloatTensor(1,3,127,127).cuda() |
|
var = Variable(var) |
|
template = net(var) |
|
print('Examplar Size: {}'.format(template.shape)) |
|
|
|
var = torch.FloatTensor(1,3,255,255).cuda() |
|
var = Variable(var) |
|
|
|
net(var) |
|
|
|
|