oguzakif's picture
init repo
d4b77ac
import torch.nn as nn
import torch
from torch.autograd import Variable
import math
import torch.utils.model_zoo as model_zoo
from models.features import Features
from utils.log_helper import log_once
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(Features):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
# padding = (2 - stride) + (dilation // 2 - 1)
padding = 2 - stride
assert stride==1 or dilation==1, "stride and dilation must have one equals to zero at least"
if dilation > 1:
padding = dilation
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=padding, bias=False, dilation=dilation)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
if out.size() != residual.size():
print(out.size(), residual.size())
out += residual
out = self.relu(out)
return out
class Bottleneck_nop(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck_nop, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
s = residual.size(3)
residual = residual[:, :, 1:s-1, 1:s-1]
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, layer4=False, layer3=False):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, # 3
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) # 31x31, 15x15
self.feature_size = 128 * block.expansion
if layer3:
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) # 15x15, 7x7
self.feature_size = (256 + 128) * block.expansion
else:
self.layer3 = lambda x:x # identity
if layer4:
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) # 7x7, 3x3
self.feature_size = 512 * block.expansion
else:
self.layer4 = lambda x:x # identity
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
dd = dilation
if stride != 1 or self.inplanes != planes * block.expansion:
if stride == 1 and dilation == 1:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
else:
if dilation > 1:
dd = dilation // 2
padding = dd
else:
dd = 1
padding = 0
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=3, stride=stride, bias=False,
padding=padding, dilation=dd),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
# layers.append(block(self.inplanes, planes, stride, downsample, dilation=dilation))
layers.append(block(self.inplanes, planes, stride, downsample, dilation=dd))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
# print x.size()
x = self.maxpool(x)
# print x.size()
p1 = self.layer1(x)
p2 = self.layer2(p1)
p3 = self.layer3(p2)
# p3 = torch.cat([p2, p3], 1)
log_once("p3 {}".format(p3.size()))
p4 = self.layer4(p3)
return p2, p3, p4
class ResAdjust(nn.Module):
def __init__(self,
block=Bottleneck,
out_channels=256,
adjust_number=1,
fuse_layers=[2,3,4]):
super(ResAdjust, self).__init__()
self.fuse_layers = set(fuse_layers)
if 2 in self.fuse_layers:
self.layer2 = self._make_layer(block, 128, 1, out_channels, adjust_number)
if 3 in self.fuse_layers:
self.layer3 = self._make_layer(block, 256, 2, out_channels, adjust_number)
if 4 in self.fuse_layers:
self.layer4 = self._make_layer(block, 512, 4, out_channels, adjust_number)
self.feature_size = out_channels * len(self.fuse_layers)
def _make_layer(self, block, plances, dilation, out, number=1):
layers = []
for _ in range(number):
layer = block(plances * block.expansion, plances, dilation=dilation)
layers.append(layer)
downsample = nn.Sequential(
nn.Conv2d(plances * block.expansion, out, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out)
)
layers.append(downsample)
return nn.Sequential(*layers)
def forward(self, p2, p3, p4):
outputs = []
if 2 in self.fuse_layers:
outputs.append(self.layer2(p2))
if 3 in self.fuse_layers:
outputs.append(self.layer3(p3))
if 4 in self.fuse_layers:
outputs.append(self.layer4(p4))
# return torch.cat(outputs, 1)
return outputs
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
if __name__ == '__main__':
net = resnet50()
print(net)
net = net.cuda()
var = torch.FloatTensor(1,3,127,127).cuda()
var = Variable(var)
template = net(var)
print('Examplar Size: {}'.format(template.shape))
var = torch.FloatTensor(1,3,255,255).cuda()
var = Variable(var)
net(var)