File size: 8,834 Bytes
49c356f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e445523
 
49c356f
 
 
 
 
 
 
 
 
e4b5df5
49c356f
 
 
 
 
e4b5df5
49c356f
 
 
 
 
 
 
 
 
 
 
 
 
e445523
 
49c356f
 
 
e445523
 
49c356f
 
 
e445523
49c356f
 
 
 
 
e445523
 
49c356f
 
 
 
 
 
 
 
 
 
 
 
e445523
49c356f
 
 
 
e445523
 
 
 
49c356f
 
 
 
 
 
 
 
 
e445523
 
 
49c356f
 
 
e445523
49c356f
 
 
 
 
 
e445523
49c356f
e445523
49c356f
 
 
e445523
49c356f
 
 
 
 
 
e445523
49c356f
 
 
e445523
49c356f
 
 
 
 
 
 
 
 
 
 
e445523
49c356f
e445523
49c356f
 
 
e445523
49c356f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e445523
49c356f
 
 
 
 
 
 
e445523
49c356f
 
 
 
 
 
 
 
 
 
 
 
 
 
e445523
 
49c356f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import gradio as gr
import numpy as np
import random
import torch
import subprocess
import time
import requests
import json
import threading

import base64
from io import BytesIO
from PIL import Image
from huggingface_hub import login


myip_spr = os.environ["myip_spr"]
myport = os.environ["myport"]

SPR = f"http://{myip_spr}:{myport}"


print('=='*20)
print(os.system("hostname -i"))
print(SPR)


prompt_examples_list =  [
    ['A cascading waterfall tumbles down moss-covered rocks, surrounded by a lush and vibrant forest.'],
    ['In a serene garden, delicate cherry blossoms fall like pink snowflakes.'],
    ['A breathtaking mountain range towers above a picturesque valley, with a winding river reflecting the surrounding beauty.'],
    ['A serene beach scene with turquoise waters, palm trees swaying in the breeze, and a radiant sunset painting the sky in hues of orange and pink.'],
    ['After the rain, sunlight breaks through the clouds, illuminating the verdant fields.']
    ] 

def update_language(value):
    if value == "zh-CN":
        return [gr.update(visible=False), gr.update(visible=True)]
    else:
        return [gr.update(visible=True), gr.update(visible=False)]    

def url_requests(url, data):
    resp = requests.post(url, data=json.dumps(data))
    img_str = json.loads(resp.text)["img_str"]
    location = json.loads(resp.text)["ip"]

    img_byte = base64.b64decode(img_str)
    img_io = BytesIO(img_byte)   
    img = Image.open(img_io)    

    return img, location

def img2img_generate(url, source_img, prompt, steps=25, strength=0.75, seed=42, guidance_scale=7.5):

    print('=*'*20)
    print(type(source_img))
    print("prompt: ", prompt)
    
    buffered = BytesIO()
    source_img.save(buffered, format="JPEG")
    img_b64 = base64.b64encode(buffered.getvalue())

    data = {"source_img": img_b64.decode(), "prompt": prompt, "steps": steps,
            "guidance_scale": guidance_scale, "seed": seed, "strength": strength}
            
    start_time = time.time()
    img, location = url_requests(url, data)
    print("*="*20)
    print("location: ", location)
    print("cost: ", time.time() - start_time)

    return img

def txt2img_example_input(value):
    print('6/12/2023', value)
    return value

def txt2img_generate(url, prompt, steps=25, seed=42, guidance_scale=7.5):
        
    print("prompt: ", prompt)
    print("steps: ", steps)
    print("url: ", url)
    
    data = {"prompt": prompt, "steps": steps, 
            "guidance_scale": guidance_scale, "seed": seed}
    
    start_time = time.time()
    img, location = url_requests(url, data)

    print("*="*20)
    print("location: ", location)
    print("cost: ", time.time() - start_time)

    return img


title = """  
# Stable Diffusion Inference Acceleration Comparison
"""

subtitle = """
# between 4th Gen and 3rd Gen Intel Xeon Scalable Processor  
"""
        
md = """
Have fun and try your own prompts and see a up to 9x performance acceleration on the new 4th Gen Intel Xeon using <a href=\"https://github.com/intel/intel-extension-for-transformers\">**Intel Extension for Transformers**</a>. You may also want to try creating your own Stable Diffusion with few-shot fine-tuning. Please refer to our <a href=\"https://medium.com/intel-analytics-software/personalized-stable-diffusion-with-few-shot-fine-tuning-on-a-single-cpu-f01a3316b13\">blog</a> and <a href=\"https://github.com/intel/neural-compressor/tree/master/examples/pytorch/diffusion_model/diffusers/textual_inversion\">code</a> available in <a href=\"https://github.com/intel/neural-compressor\">**Intel Neural Compressor**</a> and <a href=\"https://github.com/huggingface/diffusers\">**Hugging Face Diffusers**</a>.
"""

legal = """  
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.  See backup for configuration details.  No product or component can be absolutely secure.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.  
"""

details = """
- 4th Gen Intel Xeon Scalable Processor Inference. Test by Intel on 10/06/2023. Ubuntu 22.04.1 LTS, Intel Extension for Transformers(1.1.dev154+g448cc17e), Transformers 4.28.1, Diffusers 0.12.1, oneDNN v2.7.4.
"""

css = '''
    .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
    .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
    #component-4, #component-3, #component-10{min-height: 0}
    .duplicate-button img{margin: 0} 
    #img_1, #img_2, #img_3, #img_4{height:15rem}
    #mdStyle{font-size: 0.7rem}
    #titleCenter {text-align:center}
'''  

random_seed = random.randint(0, 2147483647)

with gr.Blocks(css=css) as demo:
    
    with gr.Box(visible=False) as Eng:
        gr.Markdown(title)
        gr.Markdown(subtitle)
        gr.Markdown(md)

        with gr.Tab("Text-to-Image"):
            
            with gr.Row() as text_to_image:
                
                with gr.Column():
                    prompt = gr.inputs.Textbox(label='Prompt', default='a photo of an astronaut riding a horse on mars')
                    inference_steps = gr.inputs.Slider(1, 100, label='Inference Steps - increase the steps for better quality (e.g., avoiding black image) ', default=20, step=1)
                    seed = gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1)  
                    guidance_scale = gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=7.5, step=0.1)
                    txt2img_button = gr.Button("Generate Image", variant="primary")
                    url_SPR_txt = gr.Textbox(label='url_SPR_txt', value=SPR, visible=False)

                with gr.Column():
                    result_image_1 = gr.Image(label="4th Gen Intel Xeon Scalable Processors (SPR)", elem_id="img_1")

            txt2img_input = gr.Textbox(visible=False)
            
            gr.Examples(
                    examples=prompt_examples_list,
                    inputs=txt2img_input,
                    outputs=prompt,
                    fn=txt2img_example_input,
                    cache_examples=True,
            )
        
        with gr.Tab("Image-to-Image text-guided generation"):
            
            with gr.Row() as image_to_image:
                with gr.Column():
                    source_img = gr.Image(source="upload", type="pil", value="https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg")
                    prompt_2 = gr.inputs.Textbox(label='Prompt', default='A fantasy landscape, trending on artstation')
                    inference_steps_2 = gr.inputs.Slider(1, 100, label='Inference Steps - increase the steps for better quality (e.g., avoiding black image) ', default=20, step=1)
                    seed_2 = gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1)
                    guidance_scale_2 = gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=7.5, step=0.1)
                    strength = gr.inputs.Slider(0.0, 1.0, label='Strength - adding more noise to it the larger the strength', default=0.75, step=0.01) 
                    img2img_button = gr.Button("Generate Image", variant="primary")
                    url_SPR = gr.Textbox(label='url_SPR', value=SPR, visible=False)

                with gr.Column():
                    result_image_3 = gr.Image(label="4th Gen Intel Xeon Scalable Processors (SPR)", elem_id="img_3")

        with gr.Accordion("Additional Info", open=False) as area_crazy_fn:
            gr.Markdown("**Test Configuration Details:**", elem_id='mdStyle')
            gr.Markdown(details, elem_id='mdStyle')

            gr.Markdown("**Notices and Disclaimers:**", elem_id='mdStyle')
            gr.Markdown(legal, elem_id='mdStyle')
            
    
    txt2img_button.click(fn=txt2img_generate, inputs=[url_SPR_txt, prompt, inference_steps, seed, guidance_scale], outputs=result_image_1, queue=False)
    img2img_button.click(fn=img2img_generate, inputs=[url_SPR, source_img, prompt_2, inference_steps_2, strength, seed_2, guidance_scale_2], outputs=result_image_3, queue=False)

    dt = gr.Textbox(label="Current language", visible=False)
    dt.change(update_language, inputs=dt, outputs=[Eng, zh])
    demo.load(None, inputs=None, outputs=dt, _js="() => navigator.language")


demo.queue(default_enabled=False, api_open=False, max_size=5).launch(debug=True, show_api=False)