Spaces:
Running
Running
File size: 19,056 Bytes
92894b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""Plotting utils."""
import contextlib
import math
import os
from copy import copy
from pathlib import Path
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sn
import torch
from PIL import Image, ImageDraw
from scipy.ndimage.filters import gaussian_filter1d
from ultralytics.utils.plotting import Annotator
from utils import TryExcept, threaded
from utils.general import LOGGER, clip_boxes, increment_path, xywh2xyxy, xyxy2xywh
from utils.metrics import fitness
# Settings
RANK = int(os.getenv("RANK", -1))
matplotlib.rc("font", **{"size": 11})
matplotlib.use("Agg") # for writing to files only
class Colors:
# Ultralytics color palette https://ultralytics.com/
def __init__(self):
# hex = matplotlib.colors.TABLEAU_COLORS.values()
hexs = (
"FF3838",
"FF9D97",
"FF701F",
"FFB21D",
"CFD231",
"48F90A",
"92CC17",
"3DDB86",
"1A9334",
"00D4BB",
"2C99A8",
"00C2FF",
"344593",
"6473FF",
"0018EC",
"8438FF",
"520085",
"CB38FF",
"FF95C8",
"FF37C7",
)
self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
self.n = len(self.palette)
def __call__(self, i, bgr=False):
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h): # rgb order (PIL)
return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))
colors = Colors() # create instance for 'from utils.plots import colors'
def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
"""
x: Features to be visualized
module_type: Module type
stage: Module stage within model
n: Maximum number of feature maps to plot
save_dir: Directory to save results
"""
if ("Detect" not in module_type) and (
"Segment" not in module_type
): # 'Detect' for Object Detect task,'Segment' for Segment task
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis("off")
LOGGER.info(f"Saving {f}... ({n}/{channels})")
plt.savefig(f, dpi=300, bbox_inches="tight")
plt.close()
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save
def hist2d(x, y, n=100):
# 2d histogram used in labels.png and evolve.png
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
return np.log(hist[xidx, yidx])
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
from scipy.signal import butter, filtfilt
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
def butter_lowpass(cutoff, fs, order):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
return butter(order, normal_cutoff, btype="low", analog=False)
b, a = butter_lowpass(cutoff, fs, order=order)
return filtfilt(b, a, data) # forward-backward filter
def output_to_target(output, max_det=300):
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
targets = []
for i, o in enumerate(output):
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
return torch.cat(targets, 0).numpy()
@threaded
def plot_images(images, targets, paths=None, fname="images.jpg", names=None):
# Plot image grid with labels
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(targets, torch.Tensor):
targets = targets.cpu().numpy()
max_size = 1920 # max image size
max_subplots = 16 # max image subplots, i.e. 4x4
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs**0.5) # number of subplots (square)
if np.max(images[0]) <= 1:
images *= 255 # de-normalise (optional)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, im in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
im = im.transpose(1, 2, 0)
mosaic[y : y + h, x : x + w, :] = im
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
# Annotate
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
for i in range(i + 1):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(targets) > 0:
ti = targets[targets[:, 0] == i] # image targets
boxes = xywh2xyxy(ti[:, 2:6]).T
classes = ti[:, 1].astype("int")
labels = ti.shape[1] == 6 # labels if no conf column
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale < 1: # absolute coords need scale if image scales
boxes *= scale
boxes[[0, 2]] += x
boxes[[1, 3]] += y
for j, box in enumerate(boxes.T.tolist()):
cls = classes[j]
color = colors(cls)
cls = names[cls] if names else cls
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = f"{cls}" if labels else f"{cls} {conf[j]:.1f}"
annotator.box_label(box, label, color=color)
annotator.im.save(fname) # save
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=""):
# Plot LR simulating training for full epochs
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
y = []
for _ in range(epochs):
scheduler.step()
y.append(optimizer.param_groups[0]["lr"])
plt.plot(y, ".-", label="LR")
plt.xlabel("epoch")
plt.ylabel("LR")
plt.grid()
plt.xlim(0, epochs)
plt.ylim(0)
plt.savefig(Path(save_dir) / "LR.png", dpi=200)
plt.close()
def plot_val_txt(): # from utils.plots import *; plot_val()
# Plot val.txt histograms
x = np.loadtxt("val.txt", dtype=np.float32)
box = xyxy2xywh(x[:, :4])
cx, cy = box[:, 0], box[:, 1]
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
ax.set_aspect("equal")
plt.savefig("hist2d.png", dpi=300)
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
ax[0].hist(cx, bins=600)
ax[1].hist(cy, bins=600)
plt.savefig("hist1d.png", dpi=200)
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
# Plot targets.txt histograms
x = np.loadtxt("targets.txt", dtype=np.float32).T
s = ["x targets", "y targets", "width targets", "height targets"]
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
ax = ax.ravel()
for i in range(4):
ax[i].hist(x[i], bins=100, label=f"{x[i].mean():.3g} +/- {x[i].std():.3g}")
ax[i].legend()
ax[i].set_title(s[i])
plt.savefig("targets.jpg", dpi=200)
def plot_val_study(file="", dir="", x=None): # from utils.plots import *; plot_val_study()
# Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
save_dir = Path(file).parent if file else Path(dir)
plot2 = False # plot additional results
if plot2:
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
# for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
for f in sorted(save_dir.glob("study*.txt")):
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
if plot2:
s = ["P", "R", "[email protected]", "[email protected]:.95", "t_preprocess (ms/img)", "t_inference (ms/img)", "t_NMS (ms/img)"]
for i in range(7):
ax[i].plot(x, y[i], ".-", linewidth=2, markersize=8)
ax[i].set_title(s[i])
j = y[3].argmax() + 1
ax2.plot(
y[5, 1:j],
y[3, 1:j] * 1e2,
".-",
linewidth=2,
markersize=8,
label=f.stem.replace("study_coco_", "").replace("yolo", "YOLO"),
)
ax2.plot(
1e3 / np.array([209, 140, 97, 58, 35, 18]),
[34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
"k.-",
linewidth=2,
markersize=8,
alpha=0.25,
label="EfficientDet",
)
ax2.grid(alpha=0.2)
ax2.set_yticks(np.arange(20, 60, 5))
ax2.set_xlim(0, 57)
ax2.set_ylim(25, 55)
ax2.set_xlabel("GPU Speed (ms/img)")
ax2.set_ylabel("COCO AP val")
ax2.legend(loc="lower right")
f = save_dir / "study.png"
print(f"Saving {f}...")
plt.savefig(f, dpi=300)
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
def plot_labels(labels, names=(), save_dir=Path("")):
# plot dataset labels
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
nc = int(c.max() + 1) # number of classes
x = pd.DataFrame(b.transpose(), columns=["x", "y", "width", "height"])
# seaborn correlogram
sn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
plt.close()
# matplotlib labels
matplotlib.use("svg") # faster
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
with contextlib.suppress(Exception): # color histogram bars by class
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
ax[0].set_ylabel("instances")
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
else:
ax[0].set_xlabel("classes")
sn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
sn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)
# rectangles
labels[:, 1:3] = 0.5 # center
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
for cls, *box in labels[:1000]:
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
ax[1].imshow(img)
ax[1].axis("off")
for a in [0, 1, 2, 3]:
for s in ["top", "right", "left", "bottom"]:
ax[a].spines[s].set_visible(False)
plt.savefig(save_dir / "labels.jpg", dpi=200)
matplotlib.use("Agg")
plt.close()
def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path("images.jpg")):
# Show classification image grid with labels (optional) and predictions (optional)
from utils.augmentations import denormalize
names = names or [f"class{i}" for i in range(1000)]
blocks = torch.chunk(
denormalize(im.clone()).cpu().float(), len(im), dim=0
) # select batch index 0, block by channels
n = min(len(blocks), nmax) # number of plots
m = min(8, round(n**0.5)) # 8 x 8 default
fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols
ax = ax.ravel() if m > 1 else [ax]
# plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
ax[i].axis("off")
if labels is not None:
s = names[labels[i]] + (f"—{names[pred[i]]}" if pred is not None else "")
ax[i].set_title(s, fontsize=8, verticalalignment="top")
plt.savefig(f, dpi=300, bbox_inches="tight")
plt.close()
if verbose:
LOGGER.info(f"Saving {f}")
if labels is not None:
LOGGER.info("True: " + " ".join(f"{names[i]:3s}" for i in labels[:nmax]))
if pred is not None:
LOGGER.info("Predicted:" + " ".join(f"{names[i]:3s}" for i in pred[:nmax]))
return f
def plot_evolve(evolve_csv="path/to/evolve.csv"): # from utils.plots import *; plot_evolve()
# Plot evolve.csv hyp evolution results
evolve_csv = Path(evolve_csv)
data = pd.read_csv(evolve_csv)
keys = [x.strip() for x in data.columns]
x = data.values
f = fitness(x)
j = np.argmax(f) # max fitness index
plt.figure(figsize=(10, 12), tight_layout=True)
matplotlib.rc("font", **{"size": 8})
print(f"Best results from row {j} of {evolve_csv}:")
for i, k in enumerate(keys[7:]):
v = x[:, 7 + i]
mu = v[j] # best single result
plt.subplot(6, 5, i + 1)
plt.scatter(v, f, c=hist2d(v, f, 20), cmap="viridis", alpha=0.8, edgecolors="none")
plt.plot(mu, f.max(), "k+", markersize=15)
plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9}) # limit to 40 characters
if i % 5 != 0:
plt.yticks([])
print(f"{k:>15}: {mu:.3g}")
f = evolve_csv.with_suffix(".png") # filename
plt.savefig(f, dpi=200)
plt.close()
print(f"Saved {f}")
def plot_results(file="path/to/results.csv", dir=""):
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
save_dir = Path(file).parent if file else Path(dir)
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
files = list(save_dir.glob("results*.csv"))
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
for f in files:
try:
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
y = data.values[:, j].astype("float")
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8) # actual results
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2) # smoothing line
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
LOGGER.info(f"Warning: Plotting error for {f}: {e}")
ax[1].legend()
fig.savefig(save_dir / "results.png", dpi=200)
plt.close()
def profile_idetection(start=0, stop=0, labels=(), save_dir=""):
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
s = ["Images", "Free Storage (GB)", "RAM Usage (GB)", "Battery", "dt_raw (ms)", "dt_smooth (ms)", "real-world FPS"]
files = list(Path(save_dir).glob("frames*.txt"))
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
n = results.shape[1] # number of rows
x = np.arange(start, min(stop, n) if stop else n)
results = results[:, x]
t = results[0] - results[0].min() # set t0=0s
results[0] = x
for i, a in enumerate(ax):
if i < len(results):
label = labels[fi] if len(labels) else f.stem.replace("frames_", "")
a.plot(t, results[i], marker=".", label=label, linewidth=1, markersize=5)
a.set_title(s[i])
a.set_xlabel("time (s)")
# if fi == len(files) - 1:
# a.set_ylim(bottom=0)
for side in ["top", "right"]:
a.spines[side].set_visible(False)
else:
a.remove()
except Exception as e:
print(f"Warning: Plotting error for {f}; {e}")
ax[1].legend()
plt.savefig(Path(save_dir) / "idetection_profile.png", dpi=200)
def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
xyxy = torch.tensor(xyxy).view(-1, 4)
b = xyxy2xywh(xyxy) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long()
clip_boxes(xyxy, im.shape)
crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
if save:
file.parent.mkdir(parents=True, exist_ok=True) # make directory
f = str(increment_path(file).with_suffix(".jpg"))
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
return crop
|