Spaces:
Running
Running
File size: 6,133 Bytes
125214f 1812270 eff41fa 125214f 1948116 eaa7a81 1948116 eaa7a81 1948116 8bd4ecd 1948116 d4b85b8 1948116 5667733 29f316e 1948116 d4b85b8 1948116 7316948 0bac0de 180f51e 8cedf13 1948116 3394a6e 1948116 3394a6e 1948116 7c8c861 6a338ab 11781a6 1948116 5600c91 3394a6e 5600c91 3394a6e 5600c91 3394a6e 5600c91 3394a6e 3db717c 3394a6e 5600c91 3394a6e 5600c91 5ac6aec 5600c91 3394a6e 5600c91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
import pandas as pd
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.state_manager import StateManager
class InferenceRunner(StateManager):
def __init__(self):
super().__init__()
self.initialize_state()
self.sample_images = [
"Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg"]
def answer_question(self, caption, detected_objects_str, question, model):
free_gpu_resources()
answer = model.generate_answer(question, caption, detected_objects_str)
free_gpu_resources()
return answer
def image_qa_app(self, kbvqa):
# Display sample images as clickable thumbnails
self.col1.write("Choose from sample images:")
cols = self.col1.columns(len(self.sample_images))
for idx, sample_image_path in enumerate(self.sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
image_for_display = self.resize_image(sample_image_path, 80, 80)
st.image(image_for_display)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
self.process_new_image(sample_image_path, image, kbvqa)
# Image uploader
uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
self.process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
# Display and interact with each uploaded/selected image
with self.col2:
for image_key, image_data in self.get_images_data().items():
with st.container():
nested_col21, nested_col22 = st.columns([0.65, 0.35])
image_for_display = self.resize_image(image_data['image'], 600)
nested_col21.image(image_for_display, caption=f'Uploaded Image: {image_key[-11:]}')
if not image_data['analysis_done']:
nested_col22.text("Please click 'Analyze Image'..")
if nested_col22.button('Analyze Image', key=f'analyze_{image_key}'):
caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image'], kbvqa)
self.update_image_data(image_key, caption, detected_objects_str, True)
# Initialize qa_history for each image
qa_history = image_data.get('qa_history', [])
if image_data['analysis_done']:
question = nested_col22.text_input(f"Ask a question about this image ({image_key[-11:]}):", key=f'question_{image_key}')
if nested_col22.button('Get Answer', key=f'answer_{image_key}'):
if question not in [q for q, _ in qa_history]:
answer = self.answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
self.add_to_qa_history(image_key, question, answer)
else: nested_col22.warning("This questions has already been answered.")
# Display Q&A history for each image
for q, a in qa_history:
nested_col22.text(f"Q: {q}\nA: {a}\n")
def display_message(self, message, warning=False, write=False, text=False):
pass
def run_inference(self):
self.set_up_widgets()
st.session_state['settings_changed'] = self.has_state_changed()
if st.session_state['settings_changed']:
self.col1.warning("Model settings have changed, please reload the model, this will take a second .. ")
st.session_state.button_label = "Reload Model" if self.is_model_loaded() and self.settings_changed else "Load Model"
with self.col1:
if st.session_state.method == "Fine-Tuned Model":
with st.container():
nested_col11, nested_col12 = st.columns([0.5, 0.5])
if nested_col11.button(st.session_state.button_label):
if st.session_state.button_label == "Load Model":
st.session_state['load_button_clicked'] = True
if self.is_model_loaded():
free_gpu_resources()
fine_tuned_model_already_loaded = True
else:
load_fine_tuned_model = True
else:
reload_detection_model = True
if nested_col12.button("Force Reload"):
force_reload_full_model = True
if self.is_model_loaded() and st.session_state.kbvqa.all_models_loaded:
free_gpu_resources()
self.image_qa_app(self.get_model())
elif load_fine_tuned_model:
free_gpu_resources()
self.load_model()
elif fine_tuned_model_already_loaded:
self.col1.text("Model already loaded and no settings were changed:)")
elif reload_detection_model:
free_gpu_resources()
self.reload_detection_model()
elif force_reload_full_model:
self.force_reload_model()
elif st.session_state.method == "In-Context Learning (n-shots)":
self.col1.warning(f'Model using {st.session_state.method} is not deployed yet, will be ready later.') |