File size: 7,321 Bytes
bc7d231
 
c7c92f9
 
dfda773
356a130
58e3cb5
63fc765
5554139
e9d7d81
fdc69a0
8cf7678
bc7d231
 
0fa8d68
2d605ad
1d94d91
2d605ad
 
 
 
 
8cf7678
f35e4aa
 
 
 
 
 
 
2468667
0fa8d68
 
 
1d94d91
f35e4aa
c200cd2
2d605ad
 
 
 
 
 
 
c200cd2
8cf7678
9d4c7bc
 
 
 
 
d40826b
 
7391509
 
9d4c7bc
 
 
 
40e0ea9
9d4c7bc
 
356a130
 
9d4c7bc
 
d40826b
7391509
40e0ea9
9d4c7bc
 
0fa8d68
bda1cda
 
9d4c7bc
d40826b
7391509
d40826b
 
 
 
 
2d605ad
d40826b
7391509
0fa8d68
bda1cda
d40826b
9d4c7bc
0fa8d68
d40826b
7391509
9d4c7bc
 
7391509
2d605ad
d40826b
9434757
d40826b
7391509
 
 
 
 
 
 
d40826b
 
 
 
42aac8e
 
 
 
 
 
 
 
 
 
 
 
d40826b
7b1993c
42aac8e
 
 
 
 
 
 
 
 
 
 
 
 
682bc75
 
 
 
 
 
 
 
 
 
 
 
d40826b
42aac8e
d40826b
42aac8e
9434757
9d4c7bc
c6252cf
 
 
2d605ad
c6252cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f35e4aa
 
c200cd2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model



def answer_question(image, question, caption, detected_objects_str, model):

    answer = model.generate_answer(question, image, caption, detected_objects_str)
    st.image(image)
    st.write(caption)
    st.write("----------------")
    st.write(detected_objects_str)
    return answer

def get_caption(image):
    return "Generated caption for the image"

def free_gpu_resources():
    pass

# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg", 
                 "Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg", 
                 "Files/sample7.jpg"]



def analyze_image(image, model, show_processed_image=False):
    img = copy.deepcopy(image)
    caption = model.get_caption(img)
    image_with_boxes, detected_objects_str = model.detect_objects(img)
    if show_processed_image:
        st.image(image_with_boxes)
    return caption, detected_objects

def image_qa_app(kbvqa):
    # Initialize session state for storing the current image and its Q&A history
    if 'current_image' not in st.session_state:
        st.session_state['current_image'] = None
    if 'qa_history' not in st.session_state:
        st.session_state['qa_history'] = []
    if 'analysis_done' not in st.session_state:
        st.session_state['analysis_done'] = False
    if 'answer_in_progress' not in st.session_state:
        st.session_state['answer_in_progress'] = False

    # Display sample images as clickable thumbnails
    st.write("Choose from sample images:")
    cols = st.columns(len(sample_images))
    for idx, sample_image_path in enumerate(sample_images):
        with cols[idx]:
            image = Image.open(sample_image_path)
            st.image(image, use_column_width=True)
            if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
                st.session_state['current_image'] = image
                st.session_state['qa_history'] = []
                st.session_state['analysis_done'] = False
                st.session_state['answer_in_progress'] = False

    # Image uploader
    uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
    if uploaded_image is not None:
        image = Image.open(uploaded_image)
        st.session_state['current_image'] = image
        st.session_state['qa_history'] = []
        st.session_state['analysis_done'] = False
        st.session_state['answer_in_progress'] = False

    # Analyze Image button
    if st.session_state.get('current_image') and not st.session_state['analysis_done']:
        if st.button('Analyze Image'):
            # Perform analysis on the image
            caption, detected_objects = analyze_image(st.session_state['current_image'], kbvqa)
            st.session_state['analysis_done'] = True
            st.session_state['processed_image'] = copy.deepcopy(st.session_state['current_image'])

    # Display the current image (unaltered)
    if st.session_state.get('current_image'):
        st.image(st.session_state['current_image'], caption='Uploaded Image.', use_column_width=True)

    # Get Answer button
    if st.session_state['analysis_done'] and not st.session_state['answer_in_progress']:
        question = st.text_input("Ask a question about this image:")
        if st.button('Get Answer'):
            st.session_state['answer_in_progress'] = True
            answer = answer_question(st.session_state['processed_image'], question, caption, detected_objects_str, model=kbvqa)
            st.session_state['qa_history'].append((question, answer))
            

    # Display all Q&A
    for q, a in st.session_state['qa_history']:
        st.text(f"Q: {q}\nA: {a}\n")

    # Reset the answer_in_progress flag after displaying the answer
    if st.session_state['answer_in_progress']:
        st.session_state['answer_in_progress'] = False

def run_inference():
    st.title("Run Inference")

    method = st.selectbox(
        "Choose a method:",
        ["Fine-Tuned Model", "In-Context Learning (n-shots)"],
        index=0  # Default to the first option
    )

    detection_model = st.selectbox(
        "Choose a model for object detection:",
        ["yolov5", "detic"],
        index=0  # Default to the first option
    )

    # Initialize session state for the model
    if method == "Fine-Tuned Model":
        if 'kbvqa' not in st.session_state:
            st.session_state['kbvqa'] = None
    
        # Button to load KBVQA models
        if st.button('Load KBVQA Model'):
            if st.session_state['kbvqa'] is not None:
                st.write("Model already loaded.")
            else:
                # Call the function to load models and show progress
                st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
    
            if st.session_state['kbvqa']:
                st.write("Model is ready for inference.")
                # Set default confidence based on the selected model
                default_confidence = 0.2 if detection_model == "yolov5" else 0.4
                # Slider for confidence level
                confidence_level = st.slider(
                    "Select Detection Confidence Level",
                    min_value=0.1,
                    max_value=0.9,
                    value=default_confidence,
                    step=0.1
                )
                st.session_state['kbvqa'].detection_confidence = confidence_level

        if st.session_state['kbvqa']:
            image_qa_app(st.session_state['kbvqa'])

    else: 
        st.write(f'{method} model is not ready for inference yet')
            
# Main function
def main():
    st.sidebar.title("Navigation")
    selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Evaluation Results", "Run Inference", "Dissertation Report"])

    if selection == "Home":
        st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
        st.write("Home page content goes here...")
        
    elif selection == "Dissertation Report":
        st.title("Dissertation Report")
        st.write("Click the link below to view the PDF.")
        # Example to display a link to a PDF
        st.download_button(
            label="Download PDF",
            data=open("Files/Dissertation Report.pdf", "rb"),
            file_name="example.pdf",
            mime="application/octet-stream"
        )

        
    elif selection == "Evaluation Results":
        st.title("Evaluation Results")
        st.write("This is a Place Holder until the contents are uploaded.")

        
    elif selection == "Dataset Analysis":
        st.title("OK-VQA Dataset Analysis")
        st.write("This is a Place Holder until the contents are uploaded.")


    elif selection == "Run Inference":
        run_inference()
            
    elif selection == "Object Detection":
        run_object_detection()

if __name__ == "__main__":
    main()