File size: 10,158 Bytes
17c1e65
 
 
 
 
 
 
 
 
 
946c8a9
a55a660
17c1e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a9791
17c1e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a9791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
946c8a9
 
 
 
 
 
31229df
 
 
 
 
 
 
946c8a9
 
17c1e65
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import pandas as pd
from collections import Counter
import json
import os
from PIL import Image
import numpy as np
import torch
import matplotlib.pyplot as plt
from IPython import get_ipython
import sys
import gc
import streamlit as st


class VQADataProcessor:
    """
    A class to process OKVQA dataset.

    Attributes:
        questions_file_path (str): The file path for the questions JSON file.
        annotations_file_path (str): The file path for the annotations JSON file.
        questions (list): List of questions extracted from the JSON file.
        annotations (list): List of annotations extracted from the JSON file.
        df_questions (DataFrame): DataFrame created from the questions list.
        df_answers (DataFrame): DataFrame created from the annotations list.
        merged_df (DataFrame): DataFrame resulting from merging questions and answers.
    """

    def __init__(self, questions_file_path, annotations_file_path):
        """
        Initializes the VQADataProcessor with file paths for questions and annotations.

        Parameters:
            questions_file_path (str): The file path for the questions JSON file.
            annotations_file_path (str): The file path for the annotations JSON file.
        """
        self.questions_file_path = questions_file_path
        self.annotations_file_path = annotations_file_path
        self.questions, self.annotations = self.read_json_files()
        self.df_questions = pd.DataFrame(self.questions)
        self.df_answers = pd.DataFrame(self.annotations)
        self.merged_df = None

    def read_json_files(self):
        """
        Reads the JSON files for questions and annotations.

        Returns:
            tuple: A tuple containing two lists: questions and annotations.
        """
        with open(self.questions_file_path, 'r') as file:
            data = json.load(file)
            questions = data['questions']

        with open(self.annotations_file_path, 'r') as file:
            data = json.load(file)
            annotations = data['annotations']

        return questions, annotations

    @staticmethod
    def find_most_frequent(my_list):
        """
        Finds the most frequent item in a list.

        Parameters:
            my_list (list): A list of items.

        Returns:
            The most frequent item in the list. Returns None if the list is empty.
        """
        if not my_list:
            return None
        counter = Counter(my_list)
        most_common = counter.most_common(1)
        return most_common[0][0]

    def merge_dataframes(self):
        """
        Merges the questions and answers DataFrames on 'question_id' and 'image_id'.
        """
        self.merged_df = pd.merge(self.df_questions, self.df_answers, on=['question_id', 'image_id'])

    def join_words_with_hyphen(self, sentence):

        return '-'.join(sentence.split())

    def process_answers(self):
        """
        Processes the answers by extracting raw and processed answers and finding the most frequent ones.
        """
        if self.merged_df is not None:
            self.merged_df['raw_answers'] = self.merged_df['answers'].apply(lambda x: [ans['raw_answer'] for ans in x])
            self.merged_df['processed_answers'] = self.merged_df['answers'].apply(
                lambda x: [ans['answer'] for ans in x])
            self.merged_df['most_frequent_raw_answer'] = self.merged_df['raw_answers'].apply(self.find_most_frequent)
            self.merged_df['most_frequent_processed_answer'] = self.merged_df['processed_answers'].apply(
                self.find_most_frequent)
            self.merged_df.drop(columns=['answers'], inplace=True)
        else:
            print("DataFrames have not been merged yet.")

        # Apply the function to the 'most_frequent_processed_answer' column
        self.merged_df['single_word_answers'] = self.merged_df['most_frequent_processed_answer'].apply(
            self.join_words_with_hyphen)

    def get_processed_data(self):
        """
        Retrieves the processed DataFrame.

        Returns:
            DataFrame: The processed DataFrame. Returns None if the DataFrame is empty or not processed.
        """
        if self.merged_df is not None:
            return self.merged_df
        else:
            print("DataFrame is empty or not processed yet.")
            return None

    def save_to_csv(self, df, saved_file_name):

        if saved_file_name is not None:
            if ".csv" not in saved_file_name:
                df.to_csv(os.path.join(saved_file_name, ".csv"), index=None)

            else:
                df.to_csv(saved_file_name, index=None)

        else:
            df.to_csv("data.csv", index=None)

    def display_dataframe(self):
        """
        Displays the processed DataFrame.
        """
        if self.merged_df is not None:
            print(self.merged_df)
        else:
            print("DataFrame is empty.")


def process_okvqa_dataset(questions_file_path, annotations_file_path, save_to_csv=False, saved_file_name=None):
    """
    Processes the OK-VQA dataset given the file paths for questions and annotations.

    Parameters:
        questions_file_path (str): The file path for the questions JSON file.
        annotations_file_path (str): The file path for the annotations JSON file.

    Returns:
        DataFrame: The processed DataFrame containing merged and processed VQA data.
    """
    # Create an instance of the class
    processor = VQADataProcessor(questions_file_path, annotations_file_path)

    # Process the data
    processor.merge_dataframes()
    processor.process_answers()

    # Retrieve the processed DataFrame
    processed_data = processor.get_processed_data()

    if save_to_csv:
        processor.save_to_csv(processed_data, saved_file_name)

    return processed_data


def show_image(image):
    """
    Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
    Handles different types of image inputs (file path, PIL Image, numpy array, OpenCV, PyTorch tensor).

    Args:
    image (str or PIL.Image or numpy.ndarray or torch.Tensor): The image to display.
    """
    in_jupyter = is_jupyter_notebook()
    in_colab = is_google_colab()

    # Convert image to PIL Image if it's a file path, numpy array, or PyTorch tensor
    if isinstance(image, str):

        if os.path.isfile(image):
            image = Image.open(image)
        else:
            raise ValueError("File path provided does not exist.")
    elif isinstance(image, np.ndarray):

        if image.ndim == 3 and image.shape[2] in [3, 4]:

            image = Image.fromarray(image[..., ::-1] if image.shape[2] == 3 else image)
        else:

            image = Image.fromarray(image)
    elif torch.is_tensor(image):

        image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))

    # Display the image
    if in_jupyter or in_colab:

        from IPython.display import display
        display(image)
    else:

        image.show()



def show_image_with_matplotlib(image):
    if isinstance(image, str):
        image = Image.open(image)
    elif isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    elif torch.is_tensor(image):
        image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8))

    plt.imshow(image)
    plt.axis('off')  # Turn off axis numbers
    plt.show()


def is_jupyter_notebook():
    """
    Check if the code is running in a Jupyter notebook.

    Returns:
        bool: True if running in a Jupyter notebook, False otherwise.
    """
    try:
        from IPython import get_ipython
        if 'IPKernelApp' not in get_ipython().config:
            return False
        if 'ipykernel' in str(type(get_ipython())):
            return True  # Running in Jupyter Notebook
    except (NameError, AttributeError):
        return False  # Not running in Jupyter Notebook

    return False  # Default to False if none of the above conditions are met


def is_pycharm():
    return 'PYCHARM_HOSTED' in os.environ


def is_google_colab():
    return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules


def get_image_path(name, path_type):
    """
    Generates a path for models, images, or data based on the specified type.

    Args:
    name (str): The name of the model, image, or data folder/file.
    path_type (str): The type of path needed ('models', 'images', or 'data').

    Returns:
    str: The full path to the specified resource.
    """
    # Get the current working directory (assumed to be inside 'code' folder)
    current_dir = os.getcwd()

    # Get the directory one level up (the parent directory)
    parent_dir = os.path.dirname(current_dir)

    # Construct the path to the specified folder
    folder_path = os.path.join(parent_dir, path_type)

    # Construct the full path to the specific resource
    full_path = os.path.join(folder_path, name)

    return full_path


def get_model_path(model_name):
    """
    Get the path to the 'model1' folder.

    Returns:
        str: Absolute path to the 'model1' folder.
    """
    # Directory of the current script
    current_script_dir = os.path.dirname(os.path.abspath(__file__))

    # Directory of the 'my_project' folder (parent of the 'my_model' folder)
    project_dir = os.path.dirname(current_script_dir)

    # Path to the 'models/{model_name}' folder
    model_path = os.path.join(project_dir, "models", model_name)

    return model_path


def free_gpu_resources():
    """
    Clears GPU memory.
    """
    try:
        if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.empty_cache()
        gc.collect()
        gc.collect()

        st.write("GPU memory has been cleared.")




if __name__ == "__main__":
    pass
    #val_data = process_okvqa_dataset('OpenEnded_mscoco_val2014_questions.json', 'mscoco_val2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_val.csv")
    #train_data = process_okvqa_dataset('OpenEnded_mscoco_train2014_questions.json', 'mscoco_train2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_train.csv")