Spaces:
Running
Running
File size: 6,545 Bytes
330cb8a 1eb130f e94bd1c 1eb130f 330cb8a a93f397 4117bed a93f397 4117bed a93f397 4117bed a93f397 4117bed a93f397 4117bed a93f397 4117bed a93f397 4117bed a93f397 4117bed a93f397 1eb130f 4117bed 330cb8a d7b49eb 330cb8a e6f809f 330cb8a 212cd39 d7b49eb e6f809f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import pandas as pd
import streamlit as st
from my_model.tabs.run_inference import run_inference
class UIManager:
def __init__(self):
self.tabs = {
"Home": self.display_home,
"Dataset Analysis": self.display_dataset_analysis,
"Finetuning and Evaluation Results": self.display_finetuning_evaluation,
"Run Inference": self.display_run_inference,
"Dissertation Report": self.display_dissertation_report,
"Code": self.display_code,
"More Pages will follow .. ": self.display_placeholder
}
def add_tab(self, tab_name, display_function):
self.tabs[tab_name] = display_function
def display_sidebar(self):
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", list(self.tabs.keys()))
st.sidebar.write("More Pages will follow .. ")
return selection
def display_selected_page(self, selection):
if selection in self.tabs:
self.tabs[selection]()
def display_home(self):
st.title("MultiModal Learning for Knowledge-Based Visual Question Answering")
st.write("""This application is an interactive element of the project and prepared by Mohammed Alhaj as part of the dissertation for Masters degree in Artificial Intelligence at the University of Bath.
Further details will be updated later""")
def display_dataset_analysis(self):
st.title("OK-VQA Dataset Analysis")
st.write("This is a Place Holder until the contents are uploaded.")
def display_finetuning_evaluation(self):
st.title("Finetuning and Evaluation Results")
st.write("This is a Place Holder until the contents are uploaded.")
def display_run_inference(self):
run_inference()
def display_dissertation_report(self):
st.title("Dissertation Report")
st.write("Click the link below to view the PDF.")
st.download_button(
label="Download PDF",
data=open("Files/Dissertation Report.pdf", "rb"),
file_name="example.pdf",
mime="application/octet-stream"
)
def display_code(self):
st.title("Code")
st.markdown("You can view the code for this project on the Hugging Face Space file page.")
st.markdown("[View Code](https://huggingface.co/spaces/m7mdal7aj/Mohammed_Alhaj_PlayGround/tree/main)", unsafe_allow_html=True)
def display_placeholder(self):
st.title("Stay Tuned")
st.write("This is a Place Holder until the contents are uploaded.")
class StateManager:
def __init__(self):
self.initialize_state()
def initialize_state(self):
if 'images_data' not in st.session_state:
st.session_state['images_data'] = {}
if 'model_settings' not in st.session_state:
st.session_state['model_settings'] = {'detection_model': None, 'confidence_level': None}
if 'kbvqa' not in st.session_state:
st.session_state['kbvqa'] = None
if 'selected_method' not in st.session_state:
st.session_state['selected_method'] = None
def update_model_settings(self, detection_model=None, confidence_level=None, selected_method=None):
if detection_model is not None:
st.session_state['model_settings']['detection_model'] = detection_model
if confidence_level is not None:
st.session_state['model_settings']['confidence_level'] = confidence_level
if selected_method is not None:
st.session_state['selected_method'] = selected_method
def check_settings_changed(self, current_selected_method, current_detection_model, current_confidence_level):
return (st.session_state['model_settings']['detection_model'] != current_detection_model or
st.session_state['model_settings']['confidence_level'] != current_confidence_level or
st.session_state['selected_method'] != current_selected_method)
def display_model_settings(self):
st.write("### Current Model Settings:")
st.table(pd.DataFrame(st.session_state['model_settings'], index=[0]))
def display_session_state(self):
st.write("### Current Session State:")
data = [{'Key': key, 'Value': str(value)} for key, value in st.session_state.items()]
df = pd.DataFrame(data)
st.table(df)
def get_model(self):
"""Retrieve the KBVQA model from the session state."""
return st.session_state.get('kbvqa', None)
def is_model_loaded(self):
return 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None
def reload_detection_model(self, detection_model, confidence_level):
try:
free_gpu_resources()
if self.is_model_loaded():
prepare_kbvqa_model(detection_model, only_reload_detection_model=True)
st.session_state['kbvqa'].detection_confidence = confidence_level
self.update_model_settings(detection_model, confidence_level)
free_gpu_resources()
except Exception as e:
st.error(f"Error reloading detection model: {e}")
# New methods to be added
def process_new_image(self, image_key, image, kbvqa):
if image_key not in st.session_state['images_data']:
st.session_state['images_data'][image_key] = {
'image': image,
'caption': '',
'detected_objects_str': '',
'qa_history': [],
'analysis_done': False
}
def analyze_image(self, image, kbvqa):
img = copy.deepcopy(image)
caption = kbvqa.get_caption(img)
image_with_boxes, detected_objects_str = kbvqa.detect_objects(img)
return caption, detected_objects_str, image_with_boxes
def add_to_qa_history(self, image_key, question, answer):
if image_key in st.session_state['images_data']:
st.session_state['images_data'][image_key]['qa_history'].append((question, answer))
def get_images_data(self):
return st.session_state['images_data']
def update_image_data(self, image_key, caption, detected_objects_str, analysis_done):
if image_key in st.session_state['images_data']:
st.session_state['images_data'][image_key].update({
'caption': caption,
'detected_objects_str': detected_objects_str,
'analysis_done': analysis_done
})
|